Pulmonary dendritic cells are heterogenous cells comprise four distinct subsets including two conventional dendritic cell subsets, CD103+ and CD11bhiCD14lo cells, and two monocyte-derived dendritic cell subsets. Their functions in terms of migration and T cell activation are distinct, but genes regulating their features are to be determined.
Complement receptor C5aR1/CD88 and dipeptidyl peptidase-4/CD26 define distinct hematopoietic lineages of dendritic cells.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation.
Specimen part, Cell line
View SamplesTo identify factors involved in tumorigenicity of glioma-initiating cells (GICs), we compared gene expression in GIC-like cells with and without sox11 expression.
Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation.
Specimen part, Cell line
View SamplesTo identify factors involved in glioma-initiating cells (GICs), we compared gene expression between GIC-like cells and non-GICs.
Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation.
Specimen part
View SamplesAnalysis of differentiating LSD1-KD C2C12 myoblasts. We found LSD1 is an important regulator of oxidative phenotypes in skeletal muscle cells.
LSD1 mediates metabolic reprogramming by glucocorticoids during myogenic differentiation.
Specimen part, Cell line
View SamplesTo clarify inflammatory genes whose expression is suppressed at high temperatures, we performed comprehensive analysis of gene expression by using a DNA microarray. Two independent primary cultures of mouse embryo fibroblasts (MEF1 and MEF2) were treated with LPS for 4 hours, or treated with LPS for 4 hours after the pretreatment with heat shock at 42C for 1 hour, and we identified 100 genes that undergo more than a 3-fold increase with LPS treatment. Remarkably, 86 genes (86%) underwent less than a 2-fold increase after combined treatments with heat shock and LPS in MEF1 and MEF2 cells.
Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3.
Specimen part
View SamplesInteraction of hematopoietic progenitors with the thymic stromal microenvironment induces them to proliferate, adopt the T cell fate, and asymmetrically diverge into multiple T lineages. Progenitors at various developmental stages are stratified among different regions of the thymus, implying that the corresponding microenvironments differ from one another, and provide unique sets of signals to progenitors migrating between them. The nature of these differences remains undefined. Here we use novel physical and computational approaches to characterize these stromal subregions, distinguishing gene expression in microdissected tissues from that of their lymphoid constituents. Using this approach, we comprehensively map gene expression in functionally distinct stromal microenvironments, and identify clusters of genes that define each region. Quite unexpectedly, we find that the central cortex lacks distinctive features of its own, and instead appears to function by sequestering unique microenvironments found at the cortical extremities, and modulating the relative proximity of progenitors moving between them.
Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation.
Specimen part
View SamplesHistone H3 lysine 9 (H3K9) methylation is an epigenetic mark of transcriptionally repressed chromatin. During mammalian development, H3K9 methylation levels seem to be spatiotemporally regulated by the opposing activities of methyltransferases and demethylases to govern correct gene expression. However, the combination(s) of H3K9 methyltransferase(s) and demethylase(s) that contribute to this regulation and the genes regulated by them remain unclear. Herein, we demonstrate the essential roles of H3K9 demethylases Jmjd1a and Jmjd1b in the embryogenesis and viability control of embryonic stem (ES) cells. Mouse embryos lacking Jmjd1a/Jmjd1b died after implantation. Depletion of Jmjd1a/Jmjd1b in mouse ES cells induced rapid cell death accompanied with a massive increase in H3K9 methylation. Jmjd1a/Jmjd1b depletion induced an increase in H3K9 methylation in the gene-rich regions of the chromosomes, indicating that Jmjd1a/Jmjd1b removes H3K9 methylation marks in the euchromatin. Importantly, the additional disruption of the H3K9 methyltransferase G9a in a Jmjd1a/Jmjd1b-deficient background rescued not only the H3K9 hypermethylation phenotype but also the cell death phenotype. We also found that Jmjd1a/Jmjd1b removes H3K9 methylation marks deposited by G9a in the Oct4 and Ccnd1 loci to activate transcription. In conclusion, Jmjd1a/Jmjd1b ensures ES cell viability by antagonizing G9a-mediated H3K9 hypermethylation in the gene-rich euchromatin.
Combined Loss of JMJD1A and JMJD1B Reveals Critical Roles for H3K9 Demethylation in the Maintenance of Embryonic Stem Cells and Early Embryogenesis.
Specimen part
View SamplesAnalysis of Foxp3(+)epigenetics(-) T cells, Foxp3(-)epigenetics(+) T cells, and Foxp3(+)epigenetics(+) T cells. Results indicate regulatory T cell (Treg) ontogenesis requires two independent processes, expression of the transcription factor Foxp3 and establishment of Treg epigenetic programs induced by T cell receptor (TCR) stimulation.
T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development.
Specimen part
View SamplesDuring development of the mammalian central nervous system (CNS), neurons and glial cells (astrocytes and oligodendrocytes) are generated from common neural precursor cells (NPCs). However, neurogenesis precedes gliogenesis, which normally commences at later stages of fetal telencephalic development. Astrocyte differentiation of mouse NPCs at embryonic day (E) 14.5 (relatively late gestation) is induced by activation of the transcription factor STAT3, whereas at E11.5 (mid-gestation) NPCs do not differentiate into astrocytes even when stimulated by STAT3-activating cytokines such as leukemia inhibitory factor (LIF). This can be explained in part by the fact that astrocyte-specific gene promoters are highly methylated in NPCs at E11.5, but other mechanisms are also likely to play a role. We therefore sought to identify genes involved in the inhibition of astrocyte differentiation of NPCs at midgestation. We first examined gene expression profiles in E11.5 and E14.5 NPCs, using Affymetrix GeneChip analysis, applying the Percellome method to normalize gene expression level. We then conducted in situ hybridization analysis for selected genes found to be highly expressed in NPCs at midgestation. Among these genes, we found that N-myc and high mobility group AT-hook 2 (Hmga2) were highly expressed in the E11.5 but not the E14.5 ventricular zone of mouse brain, where NPCs reside. Transduction of N-myc and Hmga2 by retroviruses into E14.5 NPCs, which normally differentiate into astrocytes in response to LIF, resulted in suppression of astrocyte differentiation. However, sustained expression of N-myc and Hmga2 in E11.5 NPCs failed to maintain the hypermethylated status of an astrocyte-specific gene promoter. Taken together, our data suggest that astrocyte differentiation of NPCs is regulated not only by DNA methylation but also by genes whose expression is controlled spatio-temporally during brain development.
Identification of genes that restrict astrocyte differentiation of midgestational neural precursor cells.
No sample metadata fields
View Samples