Olfactory sensory neurons express just one out of a possible ~1000 odorant receptor genes, reflecting an exquisite mode of gene regulation. In one model, once an odorant receptor is chosen for expression, other receptor genes are suppressed by a negative feedback mechanism, ensuring a stable functional identity of the sensory neuron for the lifetime of the cell. The signal transduction mechanism subserving odorant receptor gene silencing remains obscure, however. Here we demonstrate in the zebrafish that odorant receptor gene silencing is dependent on receptor activity. Moreover, we show that signaling through G protein ß? subunits is both necessary and sufficient to suppress the expression of odorant receptor genes, and likely acts through histone methylation to maintain the silenced odorant receptor genes in transcriptionally inactive heterochromatin. These results provide new insights linking receptor activity with the epigenetic mechanisms responsible for ensuring the expression of one odorant receptor per olfactory sensory neuron. Overall design: Total 6 samples were analyzed-3 controls & 3 samples
Normalization of RNA-seq data using factor analysis of control genes or samples.
No sample metadata fields
View Samples