This SuperSeries is composed of the SubSeries listed below.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View SamplesThese studies adress differential changes in gene expression between sleep deprived and control mice. We profiled gene expression at four time points across the 24H Light/Dark cycle to take into account circadian influences and used three different inbred strains to understand the influence of genetic background.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View SamplesTo gain insight into the molecular changes of sleep need, this study addresses gene expression changes in a subpopulation of neurons selectively activated by sleep deprivation. Whole brain expression analyses after 6h sleep deprivation clearly indicate that Homer1a is the best index of sleep need, consistently in all mouse strains analyzed. Transgenic mice expressing a FLAG-tagged poly(A)-binding protein (PABP) under the control of Homer1a promoter were generated. Because PABP binds the poly(A) tails of mRNA, affinity purification of FLAG-tagged PABP proteins from whole brain lysates, is expected to co-precipitate all mRNAs from neurons expressing Homer1a. Three other activity-induced genes (Ptgs2, Jph3, and Nptx2) were identified by this technique to be over-expressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View SamplesWe analyzed expression changes between JAK2V617F positive bone marrow cells and JAK2V617F negative cells
Autocrine Tnf signaling favors malignant cells in myelofibrosis in a Tnfr2-dependent fashion.
Specimen part, Treatment
View SamplesInflammation has pleiotropic effects on carcinogenesis and tumor progression. Signaling through the adaptor protein MyD88 promotes carcinogenesis in several chemically induced cancer models. Interestingly, we observed a protective role for MyD88 in the development of AOM/DSS colitis-associated cancer. The inability of Myd88-/- mice to heal ulcers generated upon injury creates an inflammatory environment that increases the frequency of mutations and results in a dramatic increase in adenoma formation and cancer progression. Susceptibility to colitis development and enhanced polyp formation were also observed in Il18-/- mice upon AOM/DSS treatment, suggesting that the phenotype of MyD88 knockouts is in part due to their inability to signal through the IL-18 receptor. This study revealed a previously unknown level of complexity surrounding MyD88 activities downstream of different receptors that differentially impact tissue homeostasis and carcinogenesis.
MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18.
Specimen part, Disease, Disease stage
View SamplesWe have determined the whole genome sequence of an individual at high accuracy and performed an integrated analysis of omics profiles over a 1.5 year period that included healthy and two virally infected states. Omics profiling of transcriptomes, proteomes, cytokines, metabolomes and autoantibodyomes from blood components have revealed extensive, dynamic and broad changes in diverse molecular components and biological pathways that occurred during healthy and disease states. Many changes were associated with allele- and edit-specific expression at the RNA and protein levels, which may contribute to personalized responses. Importantly, genomic information was also used to predict medical risks, including Type II Diabetes (T2D), whose onset was observed during the course of our study using standard clinical tests and molecular profiles, and whose disease progression was monitored and subsequently partially managed. Our study demonstrates that longitudinal personal omics profiling can relate genomic information to global functional omics activity for physiological and medical interpretation of healthy and disease states. Overall design: Examination of blood component in 20 different time points over 1.5 years which includes 2 disease state and 18 healty state Related exome studies at: SRX083314 SRX083313 SRX083312 SRX083311
Personal omics profiling reveals dynamic molecular and medical phenotypes.
Specimen part, Disease, Subject
View Samples