Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are attributable to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. Although embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first 4 postnatal weeks and that these changes are correlated with primarily monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of two-pore K leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells.
Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons.
Specimen part
View SamplesHistone H3 lysine 9 (H3K9) methylation is an epigenetic mark of transcriptionally repressed chromatin. During mammalian development, H3K9 methylation levels seem to be spatiotemporally regulated by the opposing activities of methyltransferases and demethylases to govern correct gene expression. However, the combination(s) of H3K9 methyltransferase(s) and demethylase(s) that contribute to this regulation and the genes regulated by them remain unclear. Herein, we demonstrate the essential roles of H3K9 demethylases Jmjd1a and Jmjd1b in the embryogenesis and viability control of embryonic stem (ES) cells. Mouse embryos lacking Jmjd1a/Jmjd1b died after implantation. Depletion of Jmjd1a/Jmjd1b in mouse ES cells induced rapid cell death accompanied with a massive increase in H3K9 methylation. Jmjd1a/Jmjd1b depletion induced an increase in H3K9 methylation in the gene-rich regions of the chromosomes, indicating that Jmjd1a/Jmjd1b removes H3K9 methylation marks in the euchromatin. Importantly, the additional disruption of the H3K9 methyltransferase G9a in a Jmjd1a/Jmjd1b-deficient background rescued not only the H3K9 hypermethylation phenotype but also the cell death phenotype. We also found that Jmjd1a/Jmjd1b removes H3K9 methylation marks deposited by G9a in the Oct4 and Ccnd1 loci to activate transcription. In conclusion, Jmjd1a/Jmjd1b ensures ES cell viability by antagonizing G9a-mediated H3K9 hypermethylation in the gene-rich euchromatin.
Combined Loss of JMJD1A and JMJD1B Reveals Critical Roles for H3K9 Demethylation in the Maintenance of Embryonic Stem Cells and Early Embryogenesis.
Specimen part
View SamplesGene expression changes in mouse skeletal muscle were assessed in wild-type and Jhdm2a null skeletal muscle in an effort to define the role of Jhdm2a in energy expenditure and metabolism.
Role of Jhdm2a in regulating metabolic gene expression and obesity resistance.
Sex, Age, Specimen part
View SamplesWe found that a number of Tfh cells downmodulated BCL6 protein after their development, and we sought to compare the gene expression between BCL6-hi Tfh cells and BCL6-low Tfh cells.
Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity.
Specimen part
View SamplesAquaporin-11 (AQP11), a new member of the aquaporin family, is localized in the endoplasmic reticulum (ER). Aqp11/ mice neonatally suffer from polycystic kidneys derived from the proximal tubule. Its onset is proceeded by the vacuolization of ER. However, the mechanism for the formation of vacuoles and the development of cysts remain to be clarified. Here, we show that Aqp11/ mice and polycystic kidney disease animals share a common pathogenic mechanism of cyst formation.
Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation.
Sex, Age, Specimen part
View SamplesDuring embryogenesis, many key transcription factors are used repeatedly, achieving different outcomes depending on cell type and developmental stage. The epigenetic modification of the genome functions as a memory of a cells developmental history, and it has been proposed that such modification shapes the cellular response to transcription factors. To investigate the role of DNA methylation in the response to transcription factor Gata4, we examined expression profiles of Dnmt3a-/-Dnmt3b-/- ES cell-derived mesoderm cells cultured for 4 days with or without Gata4 activation, as well as the wild-type counterparts, using Affymetrix microarrays.
DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation.
Specimen part
View SamplesThis experiment is to identify genes that are regulated by pRb in AC61 cells. AC61 cells were derived from a C-cell adenocarcinoma developed in an Rb+/-N-ras-/- mouse.
Rb Regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation.
No sample metadata fields
View SamplesBackground: It is recognized that atherosclerosis can regresses at least in animal models. However, little is known about the mechanisms. We induced regression of advanced atherosclerosis in apolipoprotein E deficient (APOE/) mice and studied underlying mechanisms. Unexpectedly, our study led to the role of interleukin-7 (IL-7) in atherogenesis.
Interleukin-7 induces recruitment of monocytes/macrophages to endothelium.
Sex, Age
View SamplesThe CCAAT/enhancer-binding proteins (CEBPs) are transcription factors involved in hematopoietic cell development and induction of several inflammatory mediators. Here, we generated CEBP-beta (CEBPB) and CEBP-epsilon (CEBPE) double-knockout (bbee) mice and compared their phenotypes to those of single-deficient (bbEE and BBee) and wild-type (BBEE) mice.
In vivo deficiency of both C/EBPβ and C/EBPε results in highly defective myeloid differentiation and lack of cytokine response.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Obesity resistance and increased hepatic expression of catabolism-related mRNAs in Cnot3+/- mice.
Sex, Specimen part
View Samples