Retinoic acid (RA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin activate distinct ligand-dependent transcription factors, and both cause cardiac malformation and heart failure in zebrafish embryos. We hypothesized that they cause this response by hyperactivating a common set of genes critical for heart development. To test this, we used microarrays to measure transcripts changes in hearts isolated from zebrafish embryos 1,2,4 and 12 h after exposure to 1M RA. We used hierarchical clustering to compare the transcriptional responses produced in the embryonic heart by RA and TCDD. We could identify no early responses in common between the two agents. However, at 12 h both treatments produced a dramatic downregulation of a common cluster of cell cycle progression genes, which we term the Cell Cycle Gene Cluster (CCGC). This was associated with a halt in heart growth. These results suggest that RA and TCDD ultimately trigger a common transcriptional response associated with heart failure, but not through the direct activation of a common set of genes. Among the genes rapidly induced by RA was Nr2F5, a member of the COUP-TF family of transcription repressors. We found that induction of Nr2F5 was both necessary and sufficient for the cardiotoxic response to RA.
Comparative genomics identifies genes mediating cardiotoxicity in the embryonic zebrafish heart.
No sample metadata fields
View SamplesThe purpose of this experiment is to understand which transcripts are differentially expressed following exposure to TCDD.
TCDD inhibits heart regeneration in adult zebrafish.
Treatment
View SamplesTo acquire more information regarding the local immune events during the different phases of S. aureus infection, gene profiling using microarray technology was used to identify host genes whose expression is substantively altered in the kidneys during the acute (T2) and persistent phase of infection (T28). Genes associated with the distinct transcript profiles were identified by comparing the relative abundance of transcripts at 2 days (acute) and 28 days (persistent) of infection to their abundance in the kidneys of uninfected control animals (CTL).
The dynamics of T cells during persistent Staphylococcus aureus infection: from antigen-reactivity to in vivo anergy.
Specimen part
View SamplesBiliary atresia (BA) is a rare cholestatic disease of unknown etiology that affects infants and shows an incidence of 1 out of 18,000 live births in Europe (1). The first therapeutic option is a timely performed portoenterostomy. However, the majority of patients suffer from a progressive inflammatory process, which leads to complete destruction of the extra- and intrahepatic biliary system followed by end-stage liver cirrhosis. Hence, BA is the leading indication for pediatric liver transplantation worldwide (2, 3). To understand the pathogenesis of the disease and improve theoutcome of BA patients, research has focused on the inflammatory process in liver and bile ducts, in which several factors are remarkably elevated, such as activated CD4 and CD8 T-cells, TNF alpha,IFN alpha and other proinflammatory TH1 cytokines (3-8). By the time of diagnosis, however, the disease has already reached an advanced state, characterized by the complete obstruction of the extrahepatic bile ducts with impaired bile flow and fibrosis or cirrhosis of the liver. Therefore, studies in humans focusing on the trigger mechanism of BA are limited due to the paucity of liver and availability of bile duct tissue for research. One infectious animal model has been developed, in which newborn Balb/c mice exclusively show the experimental BA phenotype after infection with rhesus rotavirus (RRV) (9, 10). This model allows the analysis of the inflammatory reactions in liver and bile ducts at early steps in the development of bile duct atresia (11-20). Furthermore, inbred mouse strains have been shown to have a different susceptibility for the development of experimental BA, suggesting that Balb/c mice have an immunological gap responsible for disease progression (10, 12). The aim of this study was to identify key genes responsible for the BA phenotype by comparing the transcriptomes at an early time point after virus infection, i.e. before bile duct atresia, between two mouse strains with different susceptibilities to BA. Differences in the virus titration and the clinical course of infected mice were analyzed, and variations in the hepatic gene response assessed by comparative microarray assays were correlated to variances in the hepatic inflammatory reaction.
Susceptibility to experimental biliary atresia linked to different hepatic gene expression profiles in two mouse strains.
Specimen part
View Samples[1] Lactic acidosis time course: MCF7 cells were exposed to lactic acidosis for different length of time. We used microarrays to examine the genomic programs of cells incubated under lactic acidosis for different length of time
Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through MondoA.
Cell line, Treatment
View SamplesWe used gene expression microarrays to identify genes whose expression was influenced differently by TNFa in Fancc-deficient mice compared to wild type (WT) mice. To identify genes whose expression was directly or indirectly influenced by Fancc, we looked in particular for genes either suppressed or induced by TNF in WT cells that were not affected by TNF in Fancc-deficient cells.
FANCL ubiquitinates β-catenin and enhances its nuclear function.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing.
Specimen part
View SamplesThe cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.
A translational profiling approach for the molecular characterization of CNS cell types.
No sample metadata fields
View SamplesThe cohesin offloading protein Wapal also acts as a polycomb factor in flies. We examined its role in transcriptional role in murine embryonic stem cells (ESCs)
The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing.
Specimen part
View SamplesThe cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.
A translational profiling approach for the molecular characterization of CNS cell types.
No sample metadata fields
View Samples