To investigate the role of YAP/TAZ as factors able to convert differentiated cells into stem cells of the same tissue, we compared the expression profiles of mammary organoids (yOrg) obtained by doxycycline-inducible expression of YAP in luminal differentiated mammary cells with original luminal differentiated mammary cells (Lum) and organoids from native mammary stem cells (Org).
Induction of Expandable Tissue-Specific Stem/Progenitor Cells through Transient Expression of YAP/TAZ.
Specimen part
View SamplesMicroRNA microarrays and RNA expression arrays were used to identify functional signaling between neural stem cell progenitor cells (NSPC) and brain endothelial cells (EC) that are critical during embryonic development and tissue repair following brain injury.
The role of microRNAs in neural stem cell-supported endothelial morphogenesis.
Specimen part, Disease, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of the cortical neurons that mediate antidepressant responses.
Specimen part, Treatment
View SamplesSTAT3 is a pleiotropic transcription factor with important functions in cytokine signalling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. Here we demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IEC). Studies in genetically engineered mice showed that epithelial STAT3 activation in DSS colitis is dependent on IL-22 rather than IL-6. IL-22 was secreted by colonic CD11c+ cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3IEC-KO mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis and pathways associated with wound healing in IEC. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.
STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing.
Specimen part
View Samples