Regulatory T cells (Tregs) can suppress a wide variety of cell types, in diverse organ sites and inflammatory conditions. While Tregs possess multiple suppressive mechanisms, the number required for maximal function is unclear. Furthermore, whether any inter-relationship orcross-regulatory mechanisms exist that areused to orchestrate and control their utilization is unknown. Here we assessed the functional capacity of Tregs lacking the ability to secrete both interleukin-10 (IL-10) and IL-35, which individually are required for maximal Treg activity. Surprisingly, IL-10/IL-35-double deficient Tregswere fully functionalin vitro and in vivo. Loss of IL-10 and IL-35 was compensated for by a concurrent increase in cathepsin E (CTSE) expression, enhanced TRAIL (Tnfsf10)expression and soluble TRAIL release, rendering IL-10/IL-35-double deficient Tregsfunctionally dependent on TRAIL in vitro and in vivo. Lastly, while C57BL/6 Tregs are IL-10/IL-35-dependent, Balb/c Tregs, which express high levels of CTSE and enhanced TRAIL expression, are TRAIL-dependent.These data reveal that cross-regulatory pathways exist, which control the utilization of suppressive mechanisms,thereby providing Tregfunctional plasticity.
The plasticity of regulatory T cell function.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dynamic regulatory network controlling TH17 cell differentiation.
Specimen part, Treatment
View SamplesWe compared the aorta of 6-weeks-old mice (young) with 18-months-old mice (old). Using the publicly available tools Sylamer and DIANA-mirExTra, we identified an enrichment for miR-29 binding sites in the 3'UTR of genes downregulated in the aged aortas. We subsequently showed that inhibition of miR-29 in aged mice prevented dilation of the aorta.
MicroRNA-29 in aortic dilation: implications for aneurysm formation.
Age, Specimen part
View SamplesAnalyzing the kenetics of alveolar macrophage turnover after human lung transplantation and identifying protein and transcriptional differences between donor and recipient-derived alveolar macrophages Overall design: Bulk RNA sequencing performed from FACS sorted donor and recipient-derived alveolar macrophages derived from the bronchoalveolar lavage of lung transplant recipients, defined as CD45+, Live, lineage negative, CD64+CD206+ cells.
Rate of recipient-derived alveolar macrophage development and major histocompatibility complex cross-decoration after lung transplantation in humans.
Specimen part, Subject
View SamplesPTEN imparts tumor suppression in mice by cell autonomous and non-autonomous mechanisms. Whether these two tumor suppressor roles are mediated through similar or distinct signaling pathways is not known. Here we generated and analyzed knockin mice that express a series of human cancer-derived mutant alleles of PTEN in either stromal or tumor cell compartments of mammary glands. We find that cell non-autonomous tumor suppression by Pten in stromal fibroblasts strictly requires activation of P-Akt signaling, whereas cell autonomous tumor suppression in epithelial tumor cells is independent of overt canonical pathway activation
Noncatalytic PTEN missense mutation predisposes to organ-selective cancer development in vivo.
Age, Specimen part
View SamplesThe cancer-risk associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long non-coding RNA CCAT2 in the highly amplified 8q24.21 region has been implicated in cancer predisposition, though causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by downregulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel disease-specific RNA mutation (named DNA-to-RNA allelic imbalance, DRAI) at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.
Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA <i>CCAT2</i> induce myeloid malignancies via unique SNP-specific RNA mutations.
Specimen part
View Samples