Continuous regeneration of digestive enzyme (zymogen) secreting chief cells is a normal aspect of stomach function that is disrupted in pre-cancerous lesions. Regulation of zymogenic cell (ZC) differentiation is poorly understood. Here we profile Parietal, Pit, and Zymogenic cells for comparison and study.
The maturation of mucus-secreting gastric epithelial progenitors into digestive-enzyme secreting zymogenic cells requires Mist1.
Specimen part
View SamplesAtherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-loaded macrophages in the arterial wall. Intimal macrophages internalize modified lipoproteins such as oxidized LDL (oxLDL) through scavenger receptors, leading to storage of excess cholesteryl esters in lipid bodies and a "foam cell" phenotype. In addition, stimulation of macrophage Toll-like receptors (TLRs) has been shown to promote lipid body proliferation. We investigated the possibility that there are transcriptional regulators that are common to both pathways for stimulating foam cell formation (modified lipoproteins and TLR stimulation), and identified the transcription factor ATF3 as a candidate regulator.
ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation.
Sex, Specimen part
View SamplesThe innate immune system is a two-edged sword; it is absolutely required for host defense against infection, but if left uncontrolled can trigger a plethora of inflammatory diseases. Here we used systems biology approaches to predict and validate a gene regulatory network involving a dynamic interplay between the transcription factors NF-B, C/EBP, and ATF3 that controls inflammatory responses. We mathematically modeled transcriptional regulation of Il6 and Cebpd genes and experimentally validated the prediction that the combination of an initiator (NF-B), an amplifier (C/EBP) and an attenuator (ATF3) forms a regulatory circuit that discriminates between transient and persistent Toll-like receptor 4-induced signals. Our results suggest a mechanism that enables the innate immune system to detect the duration of infection and to respond appropriately.
Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals.
Sex, Specimen part
View SamplesSTAT5 is critical for differentiation, proliferation and survival of progenitor B cells suggesting a possible role in Acute Lymphoblastic Leukemia (ALL). Herein, we show increased expression of activated STAT5 in ALL patients, which correlates with treatment outcome. Mutations in Ebf1 and Pax5, genes critical for B cell development have also been identified in human ALL. To determine whether mutations in Ebf1 or Pax5 synergize with STAT5 activation to induce ALL we crossed mice expressing a constitutively active form of STAT5 (Stat5b-CA) with mice heterozygous for Ebf1 or Pax5. Haploinsufficiency of either Pax5 or Ebf1 synergized with Stat5b-CA to rapidly induce ALL in 100% of the mice. The leukemic cells displayed reduced expression of both Pax5 and Ebf1 but this had little affect on most EBF1 or PAX5 target genes. However, a subset of these genes was deregulated and included a large percentage of potential tumor suppressor genes and oncogenes. Further, most of these genes appear to be jointly regulated by both EBF1 and PAX5. Our findings suggest a model whereby small perturbations in a self-reinforcing network of transcription factors critical for B cell development, specifically PAX5 and EBF1, cooperate with STAT5 activation to initiate ALL.
Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia.
No sample metadata fields
View SamplesThe cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.
A translational profiling approach for the molecular characterization of CNS cell types.
No sample metadata fields
View SamplesThe cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.
A translational profiling approach for the molecular characterization of CNS cell types.
No sample metadata fields
View SamplesThe cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.
A translational profiling approach for the molecular characterization of CNS cell types.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sequentially acting Sox transcription factors in neural lineage development.
Specimen part
View SamplesWe report sequential binding but unique functions of different Sox transcription factors during distinct stages of neural differentiation
Sequentially acting Sox transcription factors in neural lineage development.
Specimen part
View SamplesThe transcription factor STAT5 plays a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we demonstrate that STAT5 activation cooperates with defects in the pre-BCR signaling components encoded by Blnk, Btk, Prkcb, Nfkb1, and Ikzf1 to initiate B-ALL. STAT5 antagonizes NF-B and IKAROS by opposing regulation of shared target genes. STAT5 binding was enriched at super-enhancers, which were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4, and IKAROS. Patients with high ratios of active STAT5 to NF-B or IKAROS have more aggressive disease. Our studies illustrate that an imbalance of two opposing transcriptional programs drive B-ALL, and suggest that restoring the balance of these pathways may inhibit B-ALL.
Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival.
No sample metadata fields
View Samples