Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. We combined mathematical modeling and extensive time-resolved data sets in primary erythroid progenitor cells and dissected the roles of the two transcriptional feedback regulators of the SOCS family, CIS and SOCS3 in JAK2/STAT5 signaling. Our model revealed that both feedbacks are most effective at different ligand concentration ranges.
Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range.
Specimen part
View SamplesInfluenza virus infection-induced gene expression changes of regional B cells are mediated at least in part through type I Interferon:
Influenza virus infection causes global respiratory tract B cell response modulation via innate immune signals.
Sex, Specimen part
View SamplesTranscriptional profiling of the zebrafish embryonic host response to a systemic bacterial infection with Salmonella typhimurium (strain SL1027); comparison between traf6 knock-down and control morpholino treated embryos. Overall design: All infection experiments were performed using mixed egg clutches of ABxTL strain zebrafish. Embryos injected with traf6 morpholino or a 5bp mismatch control morpholino were staged at 27 hours post fertilization (hpf) by morphological criteria and approximately 250 cfu of DsRed expressing Salmonella bacteria were injected into the caudal vein close to the urogenital opening. As a control an equal volume of PBS was likewise injected. Pools of 20-40 infected and control embryos were collected 8 hours post infection (hpi). The whole procedure was preformed in triplicate on separate days. Total RNA of the biological triplicates was pooled using equal amounts of RNA prior to RNAseq library preparation.
Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos.
No sample metadata fields
View SamplesBMP4 is down-regulated in metastatic human and murine mammary tumours. Here we determined the effect of ectopic mouse Bmp4 re-expression on global gene expression patterns in orthotopic primary mammary tumours in syngeneic Balb/c mice.
BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity.
Sex, Specimen part
View SamplesE47 represses Foxp3 transcription, albeit indirectly through the activation of unknown negative regulatory of Foxp3 transcription.
Id3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3.
Age, Specimen part
View SamplesAnalysis of expression profiles of pDCs from wild type and heterozygous E2-2 mice. Results show the control by E2-2 of the expression of pDC-enriched genes.
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesUniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.
Parthenogenetic stem cells for tissue-engineered heart repair.
Specimen part
View Samples