The goal of this experiment was to examine the innate immune response to helminth infection in the lung. Hookworms (like many other helminths) use an obligate migration pathway through the lung. Their infection has been characterized in the gut in detail, but early immune responses in the lung have not been fully characterized.
Innate immune responses to lung-stage helminth infection induce alternatively activated alveolar macrophages.
No sample metadata fields
View SamplesBACKGROUND: p53 is an important tumor suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of intestinal neoplasia has not been demonstrated.
A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine.
Specimen part
View SamplesDysregulated Wnt signalling is seen in approximately 30% of hepatocellular cancers, thus finding pathways downstream of activation of Wnt signalling is key. Using cre lox technology we have deleted the the adenomatous polyposis coli tumour suppressor protein (Apc) within the adult mouse liver and observed a rapid increase in nuclear beta-catenin and C-Myc. This is associated with an induction of proliferation leading to hepatomegally within 4 days of gene deletion. To investigate the downstream pathways responsible for these phenotypes we analysed the impact of inactivating Apc in the context of deficiency of the potentially key effectors beta-catenin and c-Myc. beta-catenin loss rescues both the proliferation and hepatomegally phenotypes following Apc loss. However c-Myc deletion, which rescues the phenotypes of Apc loss in the intestine, had no effect on the phenotypes of Apc loss. The consequences of deregulation the Wnt pathway within the liver are therefore strikingly different to those observed within the intestine, with the vast majority of Wnt targets beta-catenin dependent but c-Myc independent in the liver.
B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver.
No sample metadata fields
View SamplesWe have previously demonstrated that pre-B-cell colony enhancing factor (PBEF) ais a biomarker in sepsis and sepsis-induced acute lung injury (ALI) with genetic variants conferring ALI susceptibility118. In the current study, we explored the mechanistic participation of PBEF in ALI and ventilator-induced associated lung injury (VIALI). Initial in vitro studies and demonstrated rhPBEF aas a direct rat neutrophil chemotactic factor in vitro producing marked in vivo increases in BAL leukocytes (PMNs) in vivo following (intratracheal injection (,IT) in C57B6 mice. These latter changes were accompanied by increased BAL levels of the PMN chemoattractants (, KC and MIP2), and modest changes in lung vascular and but were not associated with significant increasesin alveolar permeability. We next explored the potential synergism between rhPBEF administration (IT) and a mechanical ventilation model of modest VILI lung injury (4 hours, 30 ml/kg tidal volume). We and observed dramatic synergistic increases in BAL PMNs, and both BAL protein and cytokine levels (IL-6, TNF-?, KC). Gene expression profiling Microarray analysis further supported a major role for PBEF in the induction of gene modules associated with ALI and VALI (NFkB pathway, leukocyte extravasation, apoptosis, toll receptor signaling). Finally, we exposed wild type and heterozygous PBEF+/- mice (targeted deletion of a single PBEF allele deletion) to a model of severe VILImechanical ventilation-induced lung injury (4 hours, 40 ml/kg tidal volume). PBEF+/- mice were significantly protected from VIALI-associated increases in BAL protein and BAL IL-6 levels and exhibited significantly reduced expression of ALI-associated gene expression modules. Together, these results indicate that PBEF is a key inflammatory mediator intimately involved in both the development and severity of ventilator-induced ALI.
Essential role of pre-B-cell colony enhancing factor in ventilator-induced lung injury.
No sample metadata fields
View Samples