Objective Previous studies showed that genetic deletion or pharmacological blockade of the Receptor for Advanced Glycation Endproducts (RAGE) prevents the early structural changes in the glomerulus associated with diabetic nephropathy (DN). To overcome limitations of mouse models that lack the progressive glomerulosclerosis observed in humans, we studied the contribution of RAGE to DN in the OVE26 type 1 mouse, a model of progressive glomerulosclerosis and decline of renal function.
Deletion of the receptor for advanced glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesEndogenous oligodendrocyte progenitor cells (OPCs) are a promising target to improve functional recovery after spinal cord injury (SCI) by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neuron. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs). Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. Overall design: DEG analysis of primary OPC and OL populations, 5 biological replicates per population
Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation <i>In Vitro</i>.
No sample metadata fields
View SamplesGene expression profiling of murine irf4-/- and irf4+/+ splenic B cells identifies genes regulated by the transcription factor IRF4 in CD40+IL-4 activated mature B cells.
Asymmetric PI3K Signaling Driving Developmental and Regenerative Cell Fate Bifurcation.
Specimen part, Treatment
View SamplesSTEP (striatal-enriched tyrosine phosphatase) is a brain-specific phosphatase named for its robust expression in striatum. Brains from homozygous and heterozygous STEP knockout mice and wild-type littermates were harvested, and striatum microdissected. RNA was extracted and hybridized to Affymetrix 230_2 microarray chips.
Downstream effects of striatal-enriched protein tyrosine phosphatase reduction on RNA expression in vivo and in vitro.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.
Specimen part, Disease, Cell line, Treatment
View SamplesIn this project, we studied a mouse model of human Down Syndrome (DS) megakaryocytic leukemia involving mutations in the GATA1 transcription factor (called GATA1s mutation). The model was generated through retroviral insertional mutagenesis in Gata1s mutant fetal liver progenitors. In this study, we analyzed the dependency of these leukemic cells on the Gata1s mutant protein.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.
Specimen part, Cell line, Treatment
View SamplesThe goal of this study is to develop a Plag1 signature and determine how its overexpression contributes to leukemogenesis.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.
Cell line
View SamplesThe goal of this study is to derive a mouse model of human Down Syndrome (DS) megakaryocytic leukemia involving mutations in the hematopoietic transcription factor, GATA1 (called GATA1s mutation). We achieved this through transduction of Gata1s mutant fetal progenitors by MSCV-based retrovirus expressing a GFP marker, followed by in vitro selection (for immortalized cell lines), and then in vivo selection (for transformed cell lines) through transplantation.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.
Specimen part
View SamplesThe goal of this study is to derive a mouse model of human Down Syndrome (DS) megakaryocytic leukemia involving mutations in the hematopoietic transcription factor, GATA1 (called GATA1s mutation). We achieved this through transduction of Gata1s mutant fetal progenitors by MSCV-based retrovirus expressing a GFP marker, followed by in vitro selection (for immortalized cell lines), and then in vivo selection (for transformed cell lines) through transplantation.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.
Specimen part
View SamplesT cell development relies on the precise developmental control of various cellular functions for appropriate positive and negative selection. Previously, gene expression profiling of peptide-driven negative selection events in the N15 TCR class I MHC-restricted mouse and D011.10 TCR class II MHC-restricted mouse has offered insights into the coordinate engagement of biological processes affecting thymocyte development. However, there has been little comparable detailed in vivo global genome expression analysis reported for positive selection.
PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla.
No sample metadata fields
View Samples