This SuperSeries is composed of the SubSeries listed below.
GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia.
Specimen part, Disease, Disease stage, Treatment
View SamplesThe goal of the microarray analysis is to determine the redundant and distinct roles of Dhh and Ihh in ovarian functions
Reproductive, Physiological, and Molecular Outcomes in Female Mice Deficient in Dhh and Ihh.
Age, Specimen part
View SamplesLoss of olfactomedin 4 (OLFM4) gene expression is associated with the progression of human prostate cancer, but its role and the molecular mechanisms involved in this process have not been completely understood. In this study, we found that Olfm4-knockout mice developed prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Importantly, we found that the hedgehog-signaling pathway was significantly upregulated in the Olfm4-knockout mouse model. We also found that restoration of OLFM4 in human prostate-cancer cells that lack OLFM4 expression significantly downregulated hedgehog signaling-pathway component expression. Furthermore, we demonstrated that the OLFM4 protein interacts with sonic hedgehog protein, as well as significantly inhibits GLI-reporter activity. Bioinformatic and immunohistochemistry analyses revealed that decreased OLFM4 and increased SHH expression was significantly associated with advanced human prostate cancer. Thus, olfactomedin 4 appears to play a critical role in regulating progression of prostate cancer, and has potential as a new biomarker for prostate cancer.
Olfactomedin 4 deficiency promotes prostate neoplastic progression and is associated with upregulation of the hedgehog-signaling pathway.
Specimen part
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View SamplesSky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.
Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.
Genetic information
View Samples