Microarray analysis was performed on BWF1 mice spleenocyte cells in control and pCONS treated mice.
Distinct gene signature revealed in white blood cells, CD4(+) and CD8(+) T cells in (NZBx NZW) F1 lupus mice after tolerization with anti-DNA Ig peptide.
No sample metadata fields
View SamplesThe development of the epidermis, a stratified squamous epithelium, is dependent on the regulated differentiation of keratinocytes. Differentiation begins with the initiation of stratification, a process tightly controlled through proper gene expression. AP-2 is expressed in skin and previous research suggested a pathway where p63 gene induction results in increased expression of AP-2 which in turn is responsible for induction of K14. This study uses a conditional gene ablation model to further explore the role of AP-2 in skin development. Mice deficient for AP-2 exhibited delayed expression of p63, K14, and K1, key genes required for development and differentiation of the epidermis. In addition, microarray analysis of E16.5 skin revealed delayed expression of additional late epidermal differentiation genes: filaggrin, repetin and secreted Ly6/Plaur domain containing 1, in mutant mice. The genetic delay in skin development was further confirmed by a functional delay in the formation of an epidermal barrier. These results document an important role for AP-2 in skin development, and reveal the existence of regulatory factors that can compensate for AP-2 in its absence.
Disruption of epidermal specific gene expression and delayed skin development in AP-2 gamma mutant mice.
No sample metadata fields
View SamplesMicroarray analysis of gene expression in the olfactory epithelium of macrophage depleted mice to study the role of macrophages in regulating neurodegeneration, neuroprotection, and neurogenesis of olfactory sensory neurons
Macrophage-mediated neuroprotection and neurogenesis in the olfactory epithelium.
No sample metadata fields
View SamplesMouse infection with the tapeworm Hymenolepis diminuta leads to a less severe DNBS-colitis. Increased Th2 and regulatory cytokine production in the spleen is a hallmark of Hymenolepis diminuta infection, therefore we hypothesized that given this microenvironment, splenic adaptive cells acquire an anti-inflammatory phenotype. We tested the ability of putative splenic regulatory B cells generated by Hymenolepis diminuta infection to down-regulate intestinal inflammation. We found that unlike splenic B cells from uninfected mice, splenic B cells from Hymenolepis diminuta -infected animals ameliorated chemically-induced colitis.
Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages.
Specimen part
View SamplesThe glomerular filtration barrier prevents large serum proteins from being lost into the urine. It is not known, however, why the filter does not routinely clog with large proteins that enter the glomerular basement membrane (GBM). Here we provide evidence that an active transport mechanism exists to remove immunoglobulins that accumulate at the filtration barrier. We found that FcRn, an IgG and albumin transport receptor, is expressed in podocytes and functions to internalize IgG from the GBM. Mice lacking FcRn accumulated IgG in the GBM as they aged and tracer studies showed delayed clearance of IgG from the kidneys of FcRn deficient mice. Supporting a role for this pathway in disease, saturating the clearance mechanism potentiated the pathogenicity of nephrotoxic sera. These studies support the idea that podocytes play an active role in removing proteins from the GBM and suggest that genetic or acquired impairment of the clearance machinery is likely to be a common mechanism promoting glomerular diseases.
Podocytes use FcRn to clear IgG from the glomerular basement membrane.
Specimen part
View SamplesWe demonstrate that expression of key markers of keratinocyte differentiation is suppressed by exposure to sodium arsenite. Folate deficiency exacerbates this effect. In addition, cancer-related cell movement genes, and growth and proliferation genes are altered. Several redox-sensitive transcription factors are implicated in mediating these gene expression changes due to arsenic treatment and folate deficiency.
Folate deficiency enhances arsenic effects on expression of genes involved in epidermal differentiation in transgenic K6/ODC mouse skin.
No sample metadata fields
View Samplessmall RNA libraries from wild-type and Hen1 mutant testes were made with either polyA tailing (VASAGFPHen1minus/plus) or adapter ligation (Hen1Testis and WTTestis) and sequenced on an Illumina GAII platform. Overall design: RNA was isolated from total testis tissue of both Hen1 wildtype and Hen1 mutant animals. After size selection from gel, the small RNA libraries wre made.
Hen1 is required for oocyte development and piRNA stability in zebrafish.
No sample metadata fields
View SamplesAffymetrix Mouse Genome 430 2.0 arrays were used to measure genome-wide gene expression levels. The results show that high-risk human papillomavirus oncogenes E6 and E7 reprogram the cervical cancer microenvironment independently of and synergistically with estrogen, a critical co-factor in cervical cancer development and maintenance.
Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen.
Specimen part, Treatment
View SamplesBackground and Aims: In the interleukin-10-deficient (Il10-/-) mouse model of IBD, 10 quantitative trait loci (QTL) have been shown to be associated with colitis susceptibility by linkage analyses on experimental crosses of highly susceptible C3H/HeJBir (C3Bir)-Il10-/- and partially resistant C57BL/6J (B6)-Il10-/- mice. The strongest locus (C3Bir-derived cytokine deficiency-induced colitis susceptibility [Cdcs]1 on Chromosome [Chr] 3) controlled multiple colitogenic subphenotypes and contributed the vast majority to the phenotypic variance in cecum and colon. This was demonstrated by interval-specific Chr 3 congenic mice wherein defined regions of Cdcs1 from C3Bir or B6 were bred into the IL-10-deficient reciprocal background and altered the susceptible or resistant phenotype. Furthermore, this locus likely acts by inducing innate hypo- and adaptive hyperresponsiveness, associated with impaired NFB responses of macrophages. The aim of the present study was to dissect the complexity of Cdcs1 by further development and characterization of reciprocal Cdcs1 congenic strains and to identify potential candidate genes in the congenic interval. Material and Methods: In total, 15 reciprocal congenic strains were generated from Il10-/- mice of either C3H/HeJBir or C57BL/6J backgrounds by 10 cycles of backcrossing. Colitis activity was monitored by histological grading. Candidate genes were identified by fine mapping of congenic intervals, sequencing, microarray analysis and a high-throughput real-time RT-PCR approach using bone marrow-derived macrophages. Results: Within the originally identified Cdcs1-interval, three independent regions were detected that likely contain susceptibility-determining genetic factors (Cdcs1.1, Cdcs1.2, and Cdcs1.3). Combining results of candidate gene approaches revealed Fcgr1, Cnn3, Larp7, and Alpk1 as highly attractive candidate genes with polymorphisms in coding or regulatory regions and expression differences between susceptible and resistant mouse strains. Conclusions: Subcongenic analysis of the major susceptibility locus Cdcs1 on mouse chromosome 3 revealed a complex genetic structure. Candidate gene approaches revealed attractive genes within the identified regions with homologs that are located in human susceptibility regions for IBD.
Cdcs1 a major colitis susceptibility locus in mice; subcongenic analysis reveals genetic complexity.
Sex, Specimen part
View SamplesPPAR is known for its anti-inflammatory actions in macrophages. However, which macrophage populations express PPAR in vivo and how it regulates tissue homeostasis in the steady state and during inflammation is not completely understood. We show that lung and spleen macrophages constitutively expressed PPAR, while other macrophage populations did not. Recruitment of monocytes to sites of inflammation was associated with induction of PPAR as they differentiated to macrophages. Its absence in these macrophages led to failed resolution of inflammation, characterized by persistent, low-level recruitment of leukocytes. Conversely, PPAR agonists supported an earlier cessation in leukocyte recruitment during resolution of acute inflammation and likewise suppressed monocyte recruitment to chronically inflamed atherosclerotic vessels. In the steady state, PPAR deficiency in macrophages had no obvious impact in the spleen but profoundly altered cellular lipid homeostasis in lung macrophages. Reminiscent of pulmonary alveolar proteinosis, LysM-Cre x PPARflox/flox mice displayed mild leukocytic inflammation in the steady-state lung and succumbed faster to mortality upon infection with S. pneumoniae. Surprisingly, this mortality was not due to overly exuberant inflammation, but instead to impaired bacterial clearance. Thus, in addition to its anti-inflammatory role in promoting resolution of inflammation, PPAR sustains functionality in lung macrophages and thereby has a pivotal role in supporting pulmonary host defense.
Systemic analysis of PPARγ in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity.
Sex, Treatment
View Samples