This SuperSeries is composed of the SubSeries listed below.
Differential roles of Sall4 isoforms in embryonic stem cell pluripotency.
Specimen part, Cell line
View SamplesMurine embryonic stem cells (ESCs) are defined by continuous self-renewal and pluripotency. A diverse repertoire of protein isoforms arising from alternative splicing are expressed in ES cells without defined biological roles. Sall4, a transcription factor essential for pluripotency, exists as two isoforms (Sall4a and Sall4b). By genome-wide location analysis, we have determined that Sall4b, and not Sall4a, binds preferentially to highly expressed loci in ES cells. Sall4a and Sall4b binding sites are distinguished by both epigenetic marks at target loci and their clustering with binding sites of other pluripotency factors. When ESCs expressing a single isoform of Sall4 are generated, Sall4b alone could maintain the pluripotent state, although it could not completely suppress all differentiation markers. Sall4a and Sall4b collaborate in maintenance of the pluripotent state, but play distinct roles. Our work is novel in establishing such isoform-specific differences in ES cells.
Differential roles of Sall4 isoforms in embryonic stem cell pluripotency.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing.
Specimen part
View SamplesThe cohesin offloading protein Wapal also acts as a polycomb factor in flies. We examined its role in transcriptional role in murine embryonic stem cells (ESCs)
The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing.
Specimen part
View SamplesSHS exposure during pregnancy has adverse effects on offspring.
In utero exposure to second-hand smoke aggravates the response to ovalbumin in adult mice.
Sex, Specimen part
View SamplesThe present study was constructed to confirm previous findings that mice on a high fat diet (HFD) treated by subcutaneous injection with exenatide (EXE) at 3g/kg once daily for 6 weeks develop exocrine pancreatic injury (Rouse et al. 2014). The present study included 12 weeks of EXE exposure at multiple concentrations (3, 10, or 30 g/kg) with multiple endpoints (histopathology evaluations, immunoassay for cytokines, immunostaining of the pancreas, serum chemistries and measurement of trypsin, amylase, and, lipase, and gene expression profiles). Time- and dose-dependent exocrine pancreatic injury was observed in mice associated with EXE exposure in a HFD environment. The time- and dose-dependent morphological changes identified in the pancreas involved acinar cell injury and death (autophagy, apoptosis, necrosis, and atrophy), cell adaptations (hypertrophy and hyperplasia), and cell survival (regeneration) accompanied with varying degrees of inflammatory response leading to secondary injury in pancreatic blood vessels, ducts, and adipose tissues. Gene expression profiles supported the presence of increased signaling for cell survival and altered lipid metabolism. The potential for EXE to cause acute or early chronic pancreatic injury was identified in a HFD environment. In human disease, the influence of pancreatitis risk factors or pre-existing chronic pancreatitis on this injury potential requires further investigation.
Extended exenatide administration enhances lipid metabolism and exacerbates pancreatic injury in mice on a high fat, high carbohydrate diet.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots.
Sex, Age, Specimen part
View SamplesTo understand the underlying cause for the observed apoptosis in E2f1-3 deficient myeloid cells. We compared gene expression profiles of Cd11b+ sorted myeloid cells isolated from bone marrow of control (E2F1-/- ) and experimental (Mxcre;E2F1-/-2-/-3f/f ) mice.
E2f1-3 are critical for myeloid development.
Age, Specimen part
View SamplesWe used microarrays to look at overall gene expression differences between miR-155-/- and WT dendritic cells under inflammatory conditions.
MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A mouse model of the most aggressive subgroup of human medulloblastoma.
Specimen part
View Samples