C/EBPb is an auto-repressed protein that becomes posttranslationally activated by Ras-MEK-ERK signalling. C/EBPb is required for oncogene-induced senescence (OIS) of primary fibroblasts, but also displays pro-oncogenic functions in many tumour cells. Here, we show that C/EBPb activation by H-RasV12 is suppressed in immortalized/transformed cells, but not in primary cells, by its 30 untranslated region (30UTR). 30UTR sequences inhibited Ras-induced cytostatic activity of C/EBPb, DNA binding, transactivation, phosphorylation, and homodimerization, without significantly affecting protein expression. The 30UTR suppressed induction of senescence-associated C/EBPb target genes, while promoting expression of genes linked to cancers and TGFb signalling. An AU-rich element (ARE) and its cognate RNA-binding protein, HuR, were required for 30UTR inhibition. These components also excluded the Cebpb mRNA from a perinuclear cytoplasmic region that contains activated ERK1/2, indicating that the site of C/EBPb translation controls de-repression by Ras signalling. Notably, 30UTR inhibition and Cebpb mRNA compartmentalization were absent in primary fibroblasts, allowing Ras-induced C/EBPb activation and OIS to proceed. Our findings reveal a novel mechanism whereby non-coding mRNA sequences selectively regulate C/EBPb activity and suppress its anti-oncogenic functions.
3'UTR elements inhibit Ras-induced C/EBPβ post-translational activation and senescence in tumour cells.
Cell line
View SamplesDorsomorphin is a small molecule inhibitor of type I bone morphogenic protein receptors (BMPRs). We have found that dorsomorphin affects a wide range of T cell function. In order to obtain the bigger picture of the effects of DM in T cell activation. transcriptomic analysis was performed using mouse primary CD25-CD4+ T cells with either DM (4 M) or vehicle in the presence or absence of stimulation by anti-CD3 and -CD28 antibodies.
Differential effects of inhibition of bone morphogenic protein (BMP) signalling on T-cell activation and differentiation.
Specimen part, Treatment
View SamplesIn order to investigate molecular events involved in the regulation of lymphoid lineage commitment, we crossed lamda5 reporter transgenic mice to mice where the GFP gene is inserted into the Rag1 locus. This allowed us to sub-fractionate common lymphoid progenitors (CLPs) and pre-pro-B cells into lamda5-Rag1low, lamda5-Rag1high and lamda5+Rag1high cells. Clonal in vitro differentiation analysis demonstrated that Rag1low cells gave rise to B/T and NK cells. Rag1high cells displayed reduced NK-cell potential with preserved capacity to generate B- and T-lineage cells while the lamda5+ cells were B-lineage restricted. Ebf1 and Pax5 expression was largely confined to the Rag1high populations. These cells also expressed a higher level of the surface protein LY6D providing an additional tool for the analysis of early lymphoid development. These data suggest that the classical CLP compartment composes a mixture of cells with more or less restricted lineage potentials opening new possibilities to investigate early hematopoiesis.
Single-cell analysis of the common lymphoid progenitor compartment reveals functional and molecular heterogeneity.
Specimen part
View SamplesSexual dimorphism of the behaviors or physiological functions in mammals is mainly due to the sex difference of the brain. The goal of this study is to identify genes mediating sexaul dimorphism of the brain.
Microarray analysis of perinatal-estrogen-induced changes in gene expression related to brain sexual differentiation in mice.
Sex, Specimen part
View SamplesTo clarify how Foxp3 regulates its target genes, we performed co-immunoprecipitation experiments and found that Foxp3 physically bound to AML1/Runx1 (Ono, M. et al, Nature, 2007). In this series of study, we compared gene regulations by AML1, wild type Foxp3, and a Foxp3 mutant with defective binding to AML1.
Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.
Specimen part
View SamplesAdipogenic differentiation and metabolic adaptation are initiated through transcriptional and epigenetic reprogramming. In particular, dynamic changes in histone modifications may play central roles in the rearrangement of gene expression patterns. LSD1 (KDM1) protein, encoded by aof2 gene, is a histone demethylase, which is involved in transcriptional regulation. Since the enzymatic activity of LSD1 is FAD (flavin adenine dinucleotide)-dependent, its effects on gene expression may be influenced by FAD availability.
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.
Specimen part
View SamplesAdipogenic differentiation and metabolic adaptation are initiated through transcriptional and epigenetic reprogramming. In particular, dynamic changes in histone modifications may play central roles in the rearrangement of gene expression patterns. BHC80 protein, encoded by phf21a gene, is a part of LSD1 histone demethylase complex and is essential for the demethylation activity.
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.
Specimen part
View SamplesThe object of this study was to identify genes transcriptionally upregulated and downregulated in response to Tcof1 haploin-sufficiency during mouse embryogensis
Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function.
No sample metadata fields
View SamplesComparison of mRNA expression from FACS isolated Gli1 expressing stromal cells from mice given SAG21k versus vehicle
Control of inflammation by stromal Hedgehog pathway activation restrains colitis.
Sex, Specimen part, Treatment
View Samples