CD95 (also called FAS and APO-1) is a prototypical death receptor that
CD95 promotes tumour growth.
Sex, Age, Specimen part, Cell line
View SamplesPerilipin A (PeriA) exclusively locates on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Adipocyte specific overexpression of PeriA caused resistance to diet-induced obesity and resulted in improved insulin sensitivity. In order to better understand the biological basis for this observed phenotype we performed DNA microarray analysis on white adipose tissue (WAT) from PeriA transgenic (Tg) and control wildtype (WT) mice.
Perilipin overexpression in white adipose tissue induces a brown fat-like phenotype.
Sex, Specimen part
View SamplesOur present study reveals significant decelerating effects on senescence processes in middle-aged SAMP1 mice supplemented for 6 or 14 months with the reduced form (QH2, 500 mg/ kg BW/ day) of coenzyme Q10 (CoQ10). To unravel molecular mechanisms of these CoQ10 effects, a genome-wide transcript profiling in liver, heart, brain and kidney of SAMP1 mice supplemented with the reduced (QH2) or oxidized form of CoQ10 (Q10) was performed. Liver seems to be the main target tissue of CoQ10 intervention, followed by kidney, heart and brain. Stringent evaluation of the resulting data revealed that QH2 has a stronger impact on gene expression than Q10, which was primarily due to differences in the bioavailability. Indeed, we found that QH2 supplementation was more effective than Q10 to increase levels of CoQ10 in the liver of SAMP1 mice (54.92-fold and 30.36-fold, respectively). To identify functional and regulatory connections of the top 50 (p < 0.05) up- and down-regulated QH2-sensitive transcripts in liver (fold changes ranging from 21.24 to -6.12), text mining analysis (Genomatix BiblioSphere, GFG level B3) was used. Hereby, we identified 11 QH2-sensitive genes which are regulated by PPAR- and are primarily involved in cholesterol synthesis (e.g. HMGCS1, HMGCL, HMGCR), fat assimilation (FABP5), lipoprotein metabolism (PLTP) and inflammation (STAT-1). Thus, we provide evidence that QH2 is involved in the reduction of fat and cholesterol synthesis via modulation of the PPAR- signalling pathway. These data may explain, at least in part, the observed effects on decelerated age-dependent degeneration processes in QH2-supplemented SAMP1 mice.
Supplementation with the reduced form of Coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-alpha gene expression signature in SAMP1 mice.
Sex, Age, Specimen part
View SamplesProductive rearrangement of the immunoglobulin heavy chain locus triggers a major developmental checkpoint that promotes limited clonal expansion of pre-B cells, culminating in cell cycle arrest and rearrangement of the kappa () or lambda () light-chain loci. B lineage cells lacking the related transcription factors IRF-4 and IRF-8 undergo a developmental arrest at the cycling pre-B cell stage and are blocked for light-chain recombination. Using Irf-4,8-/- pre-B cells we demonstrate that two pathways converge to synergistically drive light-chain rearrangement, a process that is not simply activated by cell cycle exit. One pathway is directly dependent on IRF-4, whose expression is elevated by pre-BCR signaling. IRF-4 targets the 3 and enhancers to increase locus accessibility and positions a kappa allele away from pericentromeric heterochromatin. The other pathway is triggered by attenuation of IL-7 signaling and results in activation of the intronic enhancer via binding of the transcription factor, E2A. Intriguingly, IRF-4 regulates the expression of CXCR4 and promotes the migration of pre-B cells in response to the chemokine CXCL12. We propose that IRF-4 coordinates the two pathways regulating light-chain recombination by positioning pre-B cells away from IL-7 expressing stromal cells.
Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling.
No sample metadata fields
View SamplesQuetiapine is an atypical neuroleptic with a pharmacological profile distinct from classic neuroleptics. It is currently approved for treating patients with schizophrenia, major depression and bipolar I disorder. However, its cellular effects remain elusive.
Unique pharmacological actions of atypical neuroleptic quetiapine: possible role in cell cycle/fate control.
Sex, Treatment
View Samples