A preliminary understanding of the phenotypic effect of copy number variation (CNV) of DNA segments is emerging. These rearrangements were demonstrated to influence, in a somewhat dose-dependent manner, the expression of genes mapping within. They were shown to also affect the expression of genes located on their flanks, sometimes at great distance. Here, we show by monitoring these effects at multiple life stages, that these controls over expression are effective throughout mouse development. Similarly, we observe that the more specific spatial expression patterns of CNV genes are maintained throughout life. However, we find that some brain-expressed genes appear to be under compensatory loops only at specific time-points, indicating that the influence of CNVs on these genes is modulated through development. We also observe that CNV genes are significantly enriched upon transcripts that show variable time-course of expression in different strains. Thus modifying the number of copy of a gene not only potentially alters its expression level, but possibly also its time of expression.
Copy number variation modifies expression time courses.
Sex, Age, Specimen part
View SamplesInappropriate excess of the steroid hormone aldosterone, which is a mineralocorticoid receptor (MR) agonist, is associated with increased inflammation and risk of cardiovascular disease. MR antagonists are cardioprotective and antiinflammatory in vivo, and evidence suggests that they mediate these effects in part by aldosterone- independent mechanisms.
Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice.
Sex, Specimen part, Treatment
View SamplesCopy number variation (CNV) of DNA segments has recently been identified as a major source of genetic diversity, but a more comprehensive understanding of the extent and phenotypic effect of this type of variation is only beginning to emerge. In this study we generated genome-wide expression data from 6 mouse tissues to investigate how CNVs influence gene expression.
Segmental copy number variation shapes tissue transcriptomes.
No sample metadata fields
View SamplesFoxl2 is a forkhead transcription factor expressed only in the female, but not in the male gonad. We have created mice homozygous mutant for the Foxl2 gene (KO) as well as mice carrying a conditional mutant Foxl2 allele (floxed).
Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation.
Specimen part
View SamplesWe assessed the impact of glucose transporter Glut2 gene inactivation in adult mouse liver (LG2KO mice). This suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was normal early after Glut2 inactivation but intolerance developed at later time. This was caused by progressive impairment of glucose-stimulated insulin secretion even though beta-cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinate down-regulation of cholesterol biosynthesis genes in LG2KO mice. This was associated with reduced hepatic cholesterol in fasted mice and a 30 percent reduction in bile acid production. We showed that chronic bile acids or FXR agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from fxr-/- mice. Collectively, our data show that glucose sensing by the liver controls beta-cell glucose competence, through a mechanism that likely depends on bile acid production and action on beta-cells.
Hepatic glucose sensing is required to preserve β cell glucose competence.
Specimen part
View SamplesJoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.
MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.
Specimen part, Cell line
View SamplesUniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.
Parthenogenetic stem cells for tissue-engineered heart repair.
Specimen part
View SamplesThe transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.
Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.
Specimen part
View Samplesprenatal stress response, genetic modification
Differential effects of prenatal stress in 5-Htt deficient mice: towards molecular mechanisms of gene × environment interactions.
Sex, Specimen part, Treatment
View SamplesStudies investigating the causes of autism spectrum disorder (ASD) point to genetic as well as epigenetic mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here we identify the bromodomain and extra-terminal domain containing transcriptional regulators (BETs) as epigenetic drivers of an ASD-like disorder in mice. We found that the pharmacological suppression of the BET proteins by a novel, highly selective and brain-permeable inhibitor, I-BET858, leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome in mice. Many of the I-BET858 affected genes have been linked to ASD in humans thus suggesting the key role of the BET-controlled gene network in ASD. Our studies also suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.
Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice.
Specimen part
View Samples