Both bone morphogenetic proteins (BMPs) and histone deacetylases (HDACs) have previously been established to play a role in the development of the three major cell types of the central nervous system: neurons, astrocytes, and oligodendrocytes. We have previously established a connection between these two protein families, showing that HDACs suppress BMP-promoted astrogliogenesis in the embryonic striatum. Since HDACs act in the nucleus to effect changes in transcription, an unbiased analysis of their transcriptional targets could shed light on their downstream effects on BMP-signaling. Using neurospheres from the embryonic striatum as an in vitro system to analyze this phenomenon, we have performed microarray expression profiling on BMP2- and trichostatin A (TSA)-treated cultures, followed by validation of the findings with quantitative RT-PCR and protein analysis.
Distinct and overlapping gene regulatory networks in BMP- and HDAC-controlled cell fate determination in the embryonic forebrain.
Specimen part, Treatment
View Samplesprenatal stress response, genetic modification
Differential effects of prenatal stress in 5-Htt deficient mice: towards molecular mechanisms of gene × environment interactions.
Sex, Specimen part, Treatment
View SamplesJoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.
MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.
Specimen part, Cell line
View SamplesMurine healthy tissue samples, DCIS and invasive mammary tumors were analyzed in order to identify marker genes which show enhanced expresssion in DCIS and invasive ductal carcinomas.
Identification of early molecular markers for breast cancer.
Specimen part
View SamplesWe used microarrays to look at overall gene expression differences between miR-155-/- and WT dendritic cells under inflammatory conditions.
MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development.
Specimen part
View SamplesWe used microarrays to assess the global gene expression profiles of cancer stem cells which were isolated from cutaneous squamous cell carcinomas which developed when WT, TGF beta receptor II ko, FAK KO, and TGF beta receptor II/FAK double KO were subjected to continuous DMBA treatment.
Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling.
Specimen part
View SamplesUniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.
Parthenogenetic stem cells for tissue-engineered heart repair.
Specimen part
View SamplesThe transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.
Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.
Specimen part
View SamplesStudies investigating the causes of autism spectrum disorder (ASD) point to genetic as well as epigenetic mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here we identify the bromodomain and extra-terminal domain containing transcriptional regulators (BETs) as epigenetic drivers of an ASD-like disorder in mice. We found that the pharmacological suppression of the BET proteins by a novel, highly selective and brain-permeable inhibitor, I-BET858, leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome in mice. Many of the I-BET858 affected genes have been linked to ASD in humans thus suggesting the key role of the BET-controlled gene network in ASD. Our studies also suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.
Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice.
Specimen part
View SamplesTranscriptom analysis of stellate sympathetic ganglia after 8 weeks of cardiac pressure overload caused by transverse aortic constriction.
Sympathetic alpha(2)-adrenoceptors prevent cardiac hypertrophy and fibrosis in mice at baseline but not after chronic pressure overload.
Sex
View Samples