To examine the role of SPS1 in mammals, we generated a Sps1 knockout mouse and found that systemic SPS1 deficiency was embryonic lethal. Embryos were clearly underdeveloped by E8.5 and virtually reabsorbed by E14.5. Removal of Sps1 specifically in hepatocytes using Albumin-cre preserved viability, but significantly affected expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione-S-transferase omega 1. To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma cell line, which recapitulated changes in the glutathione system proteins. We further found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 has a role in supporting and/or sustaining cancer. In addition, the increased ROS levels observed in F9 SPS1/GLRX1 deficient cells were reversed and became more like those in F9 SPS1 sufficient cells by overexpressing mouse or human GLRX1. The results suggest that SPS1 is an essential mammalian enzyme with roles in regulating redox homeostasis and controlling cell growth.
Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.
Specimen part, Cell line
View SamplesTumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here we describe a novel survival signaling pathway activated in stromal cells by contact to B-cells from chronic lymphocytic leukemia (CLL) patients. The expression of PKC-II and the subsequent activation of NF-B in bone marrow stromal cells is a prerequisite to support the survival of malignant B-cells. PKC- knockout mice are insusceptible to CLL-transplantations, underscoring the in vivo significance of the PKC-II- NF-B signaling pathway in the tumor microenvironment. Upregulated stromal PKC-II in biopsies from CLL, breast- and pancreatic- cancer patients suggest that this pathway may commonly be activated in a variety of malignancies.
Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.
Specimen part
View SamplesTumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here we describe a novel survival signaling pathway activated in stromal cells by contact to B-cells from chronic lymphocytic leukemia (CLL) patients. The expression of PKC-II and the subsequent activation of NF-B in bone marrow stromal cells is a prerequisite to support the survival of malignant B-cells. PKC- knockout mice are insusceptible to CLL-transplantations, underscoring the in vivo significance of the PKC-II- NF-B signaling pathway in the tumor microenvironment. Upregulated stromal PKC-II in biopsies from CLL, breast- and pancreatic- cancer patients suggest that this pathway may commonly be activated in a variety of malignancies.
Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC).
Specimen part, Cell line, Treatment
View SamplesMurine ES cell gene expression before RA induction are used to compare gene expression for time-points of 2, 4, 6hrs post-induction.
Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC).
No sample metadata fields
View SamplesParkinson's disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of -synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Thus, aging Pink1/ mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death. Transcriptome microarray data of Pink1-/- mouse brains in absence of a stressor, even at old age, show remarkably sparse dysregulations. See Gispert-S et al 2009 PLOS ONE.
Potentiation of neurotoxicity in double-mutant mice with Pink1 ablation and A53T-SNCA overexpression.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice.
Specimen part
View SamplesWe have found that the cell yield of oligodendrocyte precursor cells (OPCs) are higher in 31.5 than in 37 not by suppression of apoptosis but by enhancement of proliferation.
Hypothermia-induced increase of oligodendrocyte precursor cells: Possible involvement of plasmalemmal voltage-dependent anion channel 1.
Specimen part
View SamplesBackground & Aims: HNF4 is an important transcriptional regulator of hepatocyte and pancreatic function. Hnf4 deletion is embryonically lethal with severe defects in visceral endoderm formation, liver maturation and colon development. However, the precise role of this transcription factor in maintaining homeostasis of the adult intestine remains unclear. Herein, we aimed to elucidate the adult intestinal functions of Hnf4. Methods: A conditional intestinal epithelial Hnf4 knockout mouse was generated. Histological abnormality of the colonic mucosa was assessed by immunodetection and Western. Changes in global gene expression and biological network were analyzed. Results: Hnf4 intestine null mice developed normally until reaching young adulthood. Crypt distortion became apparent in the Hnf4 null colon at 3 months of age followed by focal areas of crypt dropout, increased immune cell infiltrates, crypt hyperplasia and early signs of polyposis later in life. A gene profiling analysis identified cell death and cell cycle related to cancer as the most significant sets of genes altered in the Hnf4 colon null mice. Expression levels of the tight junction proteins claudin 4, 8 and 15 were altered early in the colon epithelium of Hnf4 mutants and correlated with increased barrier permeability to a molecular tracer that does not normally penetrate normal mucosa. Conclusion: These observations support a functional role for Hnf4 in protecting the colonic mucosa against the initiation of the changes resembling inflammatory bowel diseases and polyp formation.
Loss of hepatocyte-nuclear-factor-4alpha affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice.
No sample metadata fields
View Samples