Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here we define a molecular pathway through which recombinant interleukin-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1). Anakinra promoted H2O2-driven autophagy through a xenobiotic sensing pathway involving the aryl hydrocarbon receptor that, activated through the indoleamine 2,3-dioxygenase 1-kynurenine pathway, transcriptionally activates NADPH Oxidase 4 independent of the IL-1R1. By coupling the mitochondrial redox balance to autophagy, anakinra improved the dysregulated proteostasis network in murine and human cystic fibrosis. We anticipate that anakinra may represent a therapeutic option in addition to its IL-1R1 dependent anti-inflammatory properties by acting at the intersection of mitochondrial oxidative stress and autophagy with the capacity to restore conditions in which defective proteostasis leads to human disease. Overall design: mRNA profiles of alveolar macrophages purified from C57BL/6 and Il1r1-/- mice treated or not with Anakinra
Anakinra restores cellular proteostasis by coupling mitochondrial redox balance to autophagy.
Specimen part, Genotype, Subject
View SamplesWe used microarrays to compare the global programme of gene expression in primary cultures of neurons and astrocytes. These data sets were compared to the expression profiles of other tissues, including pancreatic islets, in order to identify a specific neuroendocrine program in pancreatic islets.
Glucose regulation of a cell cycle gene module is selectively lost in mouse pancreatic islets during ageing.
Specimen part
View SamplesThe biology of chronic myeloid leukemia (CML)-stem cells is still incompletely understood. Therefore, we previously developed an inducible transgenic mouse model in which stem cell targeted induction of BCR-ABL expression leads to chronic phase CML-like disease. Here, we now demonstrate that the disease is transplantable using BCR-ABL positive LSK cells (lin-Sca-1+c-kit+). Interestingly, the phenotype is enhanced when unfractionated bone marrow (BM) cells are transplanted. However, neither progenitor cells (lin-Sca-1-c-kit+) nor mature granulocytes (CD11b+Gr-1+), or potential stem cell niche cells were able to transmit the disease or alter the phenotype. The phenotype was largely independent of BCR ABL priming prior to transplant. However, BCR-ABL abrogated the potential of LSK cells to induce full blown disease in secondary recipients. Subsequently, we found that BCR-ABL increased the fraction of multipotent progenitor cells (MPP) at the expense of long term HSC (LT-HSC) in the BM. Microarray analyses of LSK cells revealed that BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development. Our results suggest that BCR-ABL induces differentiation of LT-HSC and decreases their self renewal capacity. Furthermore, reversion of BCR-ABL eradicates mature cells while leukemic stem cells persist, giving rise to relapsed CML upon re-induction of BCR-ABL.
BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells.
Specimen part
View SamplesProliferative zone chondrocytes were microdissected from control and Ift88-deleted growth plates to determine gene expression profiles regulated by primary cilia.
Ift88 regulates Hedgehog signaling, Sfrp5 expression, and β-catenin activity in post-natal growth plate.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular profiling of the developing mouse axial skeleton: a role for Tgfbr2 in the development of the intervertebral disc.
Specimen part
View SamplesVery little is known about how intervertebral disc (IVD) is formed or maintained. Members of the TGF- superfamily are secreted signaling proteins that regulate many aspects of development including cellular differentiation. We recently showed that deletion of Tgfbr2 in Col2a expressing tissue results in alterations in development of IVD annulus fibrosus. The results suggested TGF- has an important role in regulating development of the axial skeleton, however, the mechanistic basis of TGF- action in these specialized joints is not known. To understand the mechanism of TGF- action in IVD development, we undertook a global analysis of gene expression comparing gene expression profiles in sclerotome cultures treated with TGF- or BMP4. As expected, treatment with BMP4 resulted in up-regulation of cartilage marker genes including Acan, Sox 5, Sox6, and Sox9. In contrast, treatment with TGF-1 did not regulate expression of cartilage markers but instead resulted in up-regulation of many IVD markers including Fmod and Adamtsl2. We propose TGF- has two functions in IVD development: 1) to prevent chondrocyte differentiation in the presumptive IVD and 2) to promote differentiation of annulus fibrosus from sclerotome. We have identified genes that are enriched in the IVD and regulated by TGF- that warrant further investigation as regulators of IVD development.
Molecular profiling of the developing mouse axial skeleton: a role for Tgfbr2 in the development of the intervertebral disc.
No sample metadata fields
View SamplesDendritic cells (DC) develop from hematopoietic stem cells, which is guided by instructive signals through cytokines. DC development progresses from multipotent progenitors (MPP) via common DC progenitors (CDP) into DC. Flt3 ligand (Flt3L) signaling via the Flt3/Stat3 pathway is of pivotal importance for DC development under steady state conditions. Additional factors produced during steady state or inflammation, such as TGF-beta1 or GM-CSF, also influence the differentiation potential of MPP and CDP. Here, we studied how gp130, GM-CSF and TGF-beta1 signaling influence DC lineage commitment from MPP to CDP and further into DC. We observed that activation of gp130 signaling promotes expansion of MPP. Additionally, gp130 signaling inhibited Flt3L-driven DC differentiation, but had little effect on GM-CSF-driven DC development. The inflammatory cytokine GM-CSF induces differentiation of MPP into inflammatory DC and blocks steady state DC development. Global transcriptome analysis revealed a GM-CSF-driven gene expression repertoire that primes MPP for differentiation into inflammatory DC. Finally, TGF-beta1 induces expression of DC-lineage affiliated genes in MPP, including Flt3, Irf-4 and Irf-8. Under inflammatory conditions, however, the effect of TGF- beta1 is altered: Flt3 is not upregulated, indicating that an inflammatory environment inhibits steady state DC development. Altogether, our data indicate that distinct cytokine signals produced during steady state or inflammation have a different outcome on DC lineage commitment and differentiation.
Dendritic cell lineage commitment is instructed by distinct cytokine signals.
Specimen part, Treatment
View SamplesGene expression profiling using microarray has been limited to profiling of differentially expressed genes at comparison setting since probesets for different genes have different sensitivities. We overcome this limitation by using a very large number of varied microarray datasets as a common reference, so that statistical attributes of each probeset, such as dynamic range or a threshold between low and high expression can be reliably discovered through meta-analysis. This strategy is implemented in web-based platform named Gene Expression Commons (http://gexc.stanford.edu/ ) with datasets of 39 distinct highly purified mouse hematopoietic stem/progenitor/functional cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, any scientist can explore gene expression of any gene, search by expression pattern of interest, submit their own microarray datasets, and design their own working models.
Gene Expression Commons: an open platform for absolute gene expression profiling.
Sex, Age
View SamplesStudy objectives: Chronic obstructive pulmonary disease and obstructive sleep apnea overlap syndrome is associated with excess mortality, and outcomes are related to the degree of hypoxemia. People at high altitude are susceptible to periodic breathing, and hypoxia at altitude is associated with cardio-metabolic dysfunction. Hypoxemia in these scenarios may be described as superimposed sustained plus intermittent hypoxia, or overlap hypoxia (OH), the effects of which have not been investigated. We aimed to characterize the cardio-metabolic consequences of OH in mice. Methods: C57BL/6J mice were subjected to either sustained hypoxia (SH, FiO2=0.10), intermittent hypoxia (IH, FiO2=0.21 for 12 hours, and FiO2 oscillating between 0.21 and 0.06, 60 times/hour, for 12 hours), OH (FiO2=0.13 for 12 hours, and FiO2 oscillating between 0.13 and 0.06, 60 times/hour, for 12 hours), or room air (RA), n=8/group. Blood pressure and intraperitoneal glucose tolerance test were measured serially, and right ventricular systolic pressure (RVSP) was assessed. Results: Systolic blood pressure transiently increased in IH and OH relative to SH and RA. RVSP did not increase in IH, but increased in SH and OH by 52% (p<0.001) and 20% (p=0.001). Glucose disposal worsened in IH and improved in SH, with no change in OH. Serum LDL and VLDL increased in OH and SH, but not in IH. Hepatic oxidative stress increased in all hypoxic groups, with the highest increase in OH. Conclusions: Overlap hypoxia may represent a unique and deleterious cardio-metabolic stimulus, causing systemic and pulmonary hypertension, and without protective metabolic effects characteristic of sustained hypoxia. Overall design: Whole liver mRNA profiles of C57BL/6J mice exposed to RA, SH, IH, or OH.
Combined intermittent and sustained hypoxia is a novel and deleterious cardio-metabolic phenotype.
Age, Specimen part, Genotype, Treatment, Subject
View SamplesEpigenetic modifications must underlie lineage-specific differentiation since terminally differentiated cells express tissue-specific genes, but their DNA sequence is unchanged. Hematopoiesis provides a well-defined model of progressive differentiation in which to study the role of epigenetic modifications in cell fate decisions. Multi-potent progenitors (MPPs) can differentiate into all blood cell lineages, while downstream progenitors commit to either myeloerythroid or lymphoid lineages. While DNA methylation is critical for myeloid versus lymphoid differentiation, as demonstrated by the myeloerythroid bias in Dnmt1 hypomorphs {Broske, 2009 #6}, a comprehensive DNA methylation map of hematopoietic progenitors, or of any cell lineage, does not exist. Here we have generated a mouse DNA methylation map, examining 4.6 million CpG sites throughout the genome including all CpG islands and shores, examining MPPs, all lymphoid progenitors (ALPs), common myeloid progenitors (CMPs), granulocyte/macrophage progenitors (GMPs), and thymocyte progenitors (DN1, DN2, DN3). Interestingly, differentiation towards the myeloid lineage corresponds with a net decrease in DNA methylation, while lymphoid commitment involves a net increase in DNA methylation, but both show substantial dynamic changes consistent with epigenetic plasticity during development. By comparing lineage-specific DNA methylation to gene expression array data, we find many examples of genes and pathways not previously known to be involved in lymphoid/myeloid differentiation, such as Gcnt2, Arl4c, Gadd45, and Jdp2. Several transcription factors, including Meis1 and Prdm16 were methylated and silenced during differentiation, suggesting a role in maintaining an undifferentiated state. Additionally, epigenetic modification of modifiers of the epigenome appears to be important in hematopoietic differentiation. Our results directly demonstrate that modulation of DNA methylation occurs during lineage-specific differentiation, often correlating with gene expression changes, and define a comprehensive map of the methylation and transcriptional changes that accompany myeloid versus lymphoid fate decisions.
Comprehensive methylome map of lineage commitment from haematopoietic progenitors.
Sex, Age
View Samples