The goal of the study was to identify the genes which are regulated by Interleukin-2 in the CD4+ T cells of the scurfy mice during regulatory T-cell deficiency. Scurfy (Sf) mice bear a mutation in the forkhead box P3 (Foxp3) transcription factor, lack regulatory T-cells (Treg), develop multi-organ inflammation, and die prematurely. The major target organs affected are skin, lungs, and liver. Sf mice lacking the Il2 gene (Sf.Il2-/-), despite devoid of Treg, did not develop skin and lung inflammation, but the inflammation in liver, pancreas, submandibular gland and colon remained. Genome-wide microarray analysis revealed hundreds of genes were differentially regulated among Sf, Sf.Il2-/-, and B6 CD4+ T-cells but the most changes were those encoding receptors for trafficking/chemotaxis/retention and lymphokines. Our study suggests that IL-2 controls the skin and lung inflammation in Sf mice in an apparent "organ-specific" manner through two novel mechanisms: by regulating the expression of genes encoding receptors for T-cell trafficking/chemotaxis/retention and by regulating Th2 cell expansion and lymphokine production. Thus, IL-2 is a master regulator for multi-organ inflammation and an underlying etiological factor for various diseases associated with skin and lung inflammation.
IL-2-controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: implication to multiorgan inflammation and control of skin and lung inflammation.
Sex, Specimen part
View SamplesMost of the genes were self-tolerized by Pam3CSK4 and MDP but there was no or minimal cross-tolerization.
The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands.
No sample metadata fields
View SamplesComparative analysis of cerebellar gene expression changes occurring in Sca1154Q/2Q and Sca7266Q/5Q knock-in mice
The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7.
Sex, Age
View SamplesThe goal was to determine how IL-12 affects gene expression by murine CTL.
IL-12 enhances CTL synapse formation and induces self-reactivity.
No sample metadata fields
View SamplesThe glomerular filtration barrier prevents large serum proteins from being lost into the urine. It is not known, however, why the filter does not routinely clog with large proteins that enter the glomerular basement membrane (GBM). Here we provide evidence that an active transport mechanism exists to remove immunoglobulins that accumulate at the filtration barrier. We found that FcRn, an IgG and albumin transport receptor, is expressed in podocytes and functions to internalize IgG from the GBM. Mice lacking FcRn accumulated IgG in the GBM as they aged and tracer studies showed delayed clearance of IgG from the kidneys of FcRn deficient mice. Supporting a role for this pathway in disease, saturating the clearance mechanism potentiated the pathogenicity of nephrotoxic sera. These studies support the idea that podocytes play an active role in removing proteins from the GBM and suggest that genetic or acquired impairment of the clearance machinery is likely to be a common mechanism promoting glomerular diseases.
Podocytes use FcRn to clear IgG from the glomerular basement membrane.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcription factor <i>TFCP2L1</i> patterns cells in the mouse kidney collecting ducts.
Specimen part
View SamplesGene expression analysis of mouse kidney after conditional inactivation of transcription factor Tfcp2l1
Transcription factor <i>TFCP2L1</i> patterns cells in the mouse kidney collecting ducts.
Specimen part
View SamplesNeutrophils were isolated form peripheral blood of wildtype and Phd3 null mice, cultured for 4 hours in hypoxia (3% O2) and micro array analysis performed
Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dynamic regulatory network controlling TH17 cell differentiation.
Specimen part, Treatment
View SamplesEquine herpesvirus 1 (EHV-1) is the causative agent of a number of equine pathological states, including severe disease of the central nervous system, respiratory infections, and abortion storms. Our results showed that intranasal immunization with CpG-B oligodeoxynucleotides (ODN) protects CBA mice from lethal EHV-1 challenge. IFN-γ and seven interferon-stimulated genes (ISGs) were upregulated 39.4- to 260.3-fold at 8 h postchallenge in the lungs of RacL11-challenged mice that had been immunized with CpG-B ODN. Treatment with 20 ng/ml of IFN-γ reduced EHV-1 yield by 100-fold in MH-S at 4 days post-VZV infection compared to that of untreated cells. However, IFN-γ reduced virus yield by only 2-fold in and mouse fibroblast L-M cells. To identify IFN-γ-stimulated genes that inhibit EHV-1 replication, Affymetrix microarray analyses were performed with IFN-γ-treated MH-S and L-M cells. In MH-S cells, IFN-γ upregulated 551 genes and down-regulated 136 genes as compared to those of untreated cells. In L-M cells, IFN-γ upregulated 225 genes and downregulated 2 genes. Nine genes associated with innate immune response were significantly upregulated only in MH-S cells. Five antiviral ISGs MX1, SAMHD1, NAMPT, TREX1, and DDX60 were upregulated 3.2- to 18.1-fold only in MH-S cells. These results suggest that CpG-B ODN may be used as a prophylactic agent in horses.
Interferon Gamma Inhibits Equine Herpesvirus 1 Replication in a Cell Line-Dependent Manner.
Specimen part, Cell line, Treatment
View Samples