This SuperSeries is composed of the SubSeries listed below.
Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning.
Specimen part, Treatment
View SamplesThe objective of this study was to identify genes regulated by Sonic Hedgehog pathway stimulation in neural progenitors.
Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning.
Specimen part, Treatment
View SamplesWe previously found that mice with heterozygous knockout of the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha-CaMKII HKO mice) show various dysregulated behaviors, including cyclic variations in locomotor activity (LA), suggesting that alpha-CaMKII HKO mice may serve as an animal model showing infradian oscillation of mood. We performed gene expression microarray analysis of dentate gyrus from alpha-CaMKII HKO mice. Mice were selected for the sampling such that their LA levels varied among the mice.
Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model.
Specimen part
View SamplesThese studies address temporal changes in gene expression during spontaneous sleep and extended wakefulness in the mouse cerebral cortex, a neuronal target for processes that control sleep; and the hypothalamus, an important site of sleep regulatory processes. We determined these changes by comparing expression in sleeping animals sacrificed at different times during the lights on period, to that in animals sleep deprived and sacrificed at the same diurnal time.
Macromolecule biosynthesis: a key function of sleep.
Sex, Age, Specimen part
View SamplesVinylidene Chloride has been widely used in the production of plastics and flame retardants. Exposure of B6C3F1 to VDC in the 2-year National Toxicology Program carcinogenicity bioassay resulted in a dose-dependent increase in renal cell hyperplasias, adenomas, and carcinomas (RCCs). Global gene expression analysis showed overrepresentation of pathways associated with chronic xenobiotic and oxidative stress in RCCs from VDC-exposed B6C3F1 mice, as well as cMyc overexpression and dysregulation of Tp53 cell cycle checkpoint and DNA damage repair pathways. Trend analysis comparing RCC, VDC-exposed kidney, and vehicle control kidney showed a conservation of pathway dysregulation in terms of overrepresentation of xenobiotic and oxidative stress, and DNA damage and cell cycle checkpoint pathways in both VDC-exposed kidney and RCC, suggesting that these mechanisms play a role in the development of RCC in VDC-exposed mice.
Renal Cell Carcinomas in Vinylidene Chloride-exposed Male B6C3F1 Mice Are Characterized by Oxidative Stress and TP53 Pathway Dysregulation.
Specimen part
View SamplesHepatocellular carcinoma (HCC) is an important cause of morbidity and mortality worldwide. Although the risk factors of human HCC are well known, the molecular characterization of this disease is complex, and treatment options in general remain poor. The use of rodent models to study human cancer has been extensively pursued both through genetically engineered rodents and rodent models used in carcinogenicity and toxicology studies. In particular, the B6C3F1 mouse used in the National Toxicology Program (NTP) 2-year bioassay has been used to evaluate the carcinogenic effects of environmental and occupational chemicals, and other compounds. The high incidence of spontaneous HCC in the B6C3F1 mouse has challenged its use as a model for chemically induced HCC in terms of relevance to the human disease. Using global gene expression profiling, we identify the dysregulation of several mediators similarly altered in human HCC, including re-expression of fetal oncogenes, upregulation of protooncogenes, downregulation of tumor suppressor genes, and abnormal expression of cell cycle mediators, growth factors, apoptosis regulators, and angiogenesis and extracellular matrix remodeling factors. Although important differences in etiology and pathogenesis remain between human and mouse HCC, there are important similarities in global gene expression and the types of signaling networks dysregulated in mouse and human HCC. These data provide further relevance for the use of this model in hazard identification of compounds with potential human carcinogenicity risk, and may help in better understanding mechanisms of tumorigenesis due to chemical exposure in the NTP 2-year carcinogenicity bioassay.
Global gene profiling of spontaneous hepatocellular carcinoma in B6C3F1 mice: similarities in the molecular landscape with human liver cancer.
Specimen part
View SamplesIntroduction: Lung cancer is the leading cause of cancer-related death in people. There are several chemically induced and genetically modified mouse models used to study lung cancer. We hypothesized that spontaneous murine (B6C3F1) lung tumors can serve as a model to study human non-small cell lung cancer (NSCLC). Methods: RNA was extracted from untreated 2-year-old B6C3F1 mouse spontaneous lung (SL) tumors and age-matched normal lung tissue from a chronic inhalation NTP study. Global gene expression analysis was performed using Affymetrix Mouse Genome 430 2.0 GeneChip arrays. After data normalization, for each probe set, pairwise comparisons between groups were made using a bootstrap t-test while controlling the mixed directional false discovery rate (mdFDR) to generate a differential gene expression list. IPA, KEGG, and EASE software tools were used to evaluate the overrepresented cancer genes and pathways. Results: MAPK and TGF-beta pathways were overrepresented within the dataset. Almost all of the validated genes by quantitative real time RT-PCR had comparable directional fold changes with the microarray data. The candidate oncogenes included Kras, Braf, Raf1, Id2, Hmga1, Cks1b, and Foxf1. The candidate tumor suppressor genes included Rb1, Cdkn2a, Hnf4a, Tcf21, Ptprd, Hpgd, Hopx, Ogn, Id4, Hoxa5, Smad6, Smad7, Zbtb16, Cyr61, Dusp4, and Ifi16. In addition, several genes important in lung development were also differentially expressed, such as Smad6, Hopx, Sox4, Sox9 and Mycn. Conclusion: In this study, we have demonstrated that several cancer genes and signaling pathways relevant for human NSCLC were similarly altered in spontaneous murine lung tumors.
Differential transcriptomic analysis of spontaneous lung tumors in B6C3F1 mice: comparison to human non-small cell lung cancer.
Disease, Disease stage
View SamplesGinkgo biloba leaf extract (GBE) has been used for centuries in traditional Chinese medicine and today is used as an herbal supplement for various indications such as improving neural function, anti-oxidant and anti-cancer effects. As part of the herbal supplement industry, these compounds are largely unregulated, and may be consumed in large concentrations over extended periods of time. This is of particular concern, because the long-term effects in terms of toxicity and carcinogenicity data is lacking for many herbal products, including GBE. The 2-year B6C3F1 mouse carcinogenicity bioassay indicated a marked dose-related increase in hepatocellular carcinoma (HCC) development associated with exposure to GBE. We have shown that the mechanism of this increase in tumorigenesis is related to a marked increase in the incidence of -catenin mutation, and report a novel mechanism of constitutive -catenin activation through post-translational modification leading to constitutive Wnt signaling and unregulated growth signaling and oncogenesis. Furthermore, using global gene expression profiling, we show that GBE-induced HCC exhibit overrepresentation of gene categories associated with human cancer and HCC signaling including upregulation of relevant oncogenes and suppression of critical tumor suppressor genes, as well as chronic oxidative stress, a known inducer of calpain-mediated degradation and promoter of hepatocarcinogenesis in humans. These data provide a molecular mechanism to GBE-induced HCC in B6C3F1 mice that is relevant to human cancer, and provides relevant molecular data that will provide the groundwork for further risk assessment of unregulated compounds, including herbal supplements.
Hepatocellular carcinomas in B6C3F1 mice treated with Ginkgo biloba extract for two years differ from spontaneous liver tumors in cancer gene mutations and genomic pathways.
Specimen part
View SamplesTo elucidate the mechanism of BCL6-mediated pre-B cell survival signaling, we investigated the gene expression pattern in BCR-ABL1-transformed BCL6+/+ and BCL6-/- B cell precursors. Pharmacological inhibition of BCR-ABL1 was performed with the BCR-ABL1 kinase inhibitor STI571 (Imatinib).
BCL6 is critical for the development of a diverse primary B cell repertoire.
Sex, Age, Specimen part, Treatment
View SamplesThe thymus is extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood and this capacity diminishes considerably with age. To identify alternate regeneration pathways in the thymus, we performed an unbiased transcriptome analysis of the non-hematopoietic (CD45-) stromal cell compartment of the thymus, which is less sensitive to thymic damage compared to the CD45+ hematopoietic compartment.
Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration.
Sex, Specimen part
View Samples