NOD mice are an inbred strain that display enhanced MZ B cell differentiation from an early age. Interestingly, several lines of evidence implicate MZ B cells in this strain as important contributors to the T cell mediated beta cell destruction associated with the development of type 1 diabetes (T1D). In order to develop a better understanding of the underlying causes for augmented MZ B cell production in NOD mice, we obtained the transcriptional profiles of FO and MZ subsets and TR precursors from NOD mice and compared them to those of the B6 strain.
Intrinsic molecular factors cause aberrant expansion of the splenic marginal zone B cell population in nonobese diabetic mice.
Sex, Age, Specimen part
View SamplesMurine healthy tissue samples, DCIS and invasive mammary tumors were analyzed in order to identify marker genes which show enhanced expresssion in DCIS and invasive ductal carcinomas.
Identification of early molecular markers for breast cancer.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Low-grade and high-grade mammary carcinomas in WAP-T transgenic mice are independent entities distinguished by Met expression.
Specimen part, Disease stage, Time
View SamplesTransgenic expression in mice of two synergistically acting SV40 early region encoded proteins, large (LT) and small (sT) tumor antigens, in the mammary epithelium recapitulates loss of p53 and Rb function and deregulation of PP2A-controlled mitogenic pathways in human breast cancer. In primiparous mice, WAP-promoter driven expression of SV40 proteins induces well and poorly differentiated mammary adenocarcinomas. We performed a correlative aCGH and gene expression analysis of 25 monofocal tumors, representing four histopathological grades, to explore the molecular traits of SV40-induced mammary tumors and to emphasize the relevance of this tumor model for human breast tumorigenesis.
Low-grade and high-grade mammary carcinomas in WAP-T transgenic mice are independent entities distinguished by Met expression.
Specimen part, Time
View SamplesThe cytosolic protein Sharpin is as a component of the linear ubiquitin chain assembly complex (LUBAC), which regulates NF-B signaling in response to specific ligands. Its inactivating mutation in Cpdm (chronic proliferative dermatitis mutation) mice causes multi-organ inflammation, yet this phenotype is not transferable into wildtype mice by hematopoietic stem cell transfer. Recent evidence demonstrated that Cpdm mice additionally display low bone mass, but the cellular and molecular causes of this phenotype remained to be established. Here we have applied non-decalcified histology together with cellular and dynamic histomorphometry to perform a thorough skeletal phenotyping of Cpdm mice. We show that Cpdm mice display trabecular and cortical osteopenia, solely explained by impaired bone formation, whereas osteoclastogenesis is unaffected. We additionally found that Cpdm mice display a severe disturbance of articular cartilage integrity in the absence of joint inflammation, supporting the concept that Sharpin-deficiency affects mesenchymal cell differentiation. Consistently, Cpdm mesenchymal cells displayed reduced osteogenic capacitiy ex vivo, yet this defect was not associated with impaired NF-B signaling. A molecular comparison of wildtype and Cpdm bone marrow cell populations further revealed that Cpdm mesenchymal cells produce higher levels of Cxcl5 and lower levels of IL1ra. Collectively, our data demonstrate that skeletal defects of Cpdm mice are not caused by chronic inflammation, but that Sharpin is as a critical regulator of mesenchymal cell differentiation and gene expression. They additionally provide an alternative molecular explanation for the inflammatory phenotype of Cpdm mice and the absence of disease transfer by hematopoetic stem cell transplantation.
Sharpin Controls Osteogenic Differentiation of Mesenchymal Bone Marrow Cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.
Specimen part, Disease
View Samples