Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.
Parthenogenetic stem cells for tissue-engineered heart repair.
Specimen part
View SamplesGene expression profiling was carried out on splenocyte mRNA samples collected from 10 animals subject to repeated social threat (pooled into 2 groups of 5) and 10 animals subject to non-threatening control conditions (pooled into 2 groups of 5). The primary research question is whether gene expression differs in CD11b+ splenocytes from animals exposed to social threat vs non-threatening control conditions.
Computational identification of gene-social environment interaction at the human IL6 locus.
Specimen part
View SamplesAim of present study was to describe the changes induced deletion of the Wfs1 gene in the temporal lobe of mice. Mutant mice were backcrossed to two different genomic backgrounds in order to exclude confounding foreign genomic background influence. Samples from temporal lobes were analyzed by using Affymetrix Genechips, expression profiles were functionally annotated by using GSEA and Ingenuity Pathway Analysis. We found that Wfs1 mutant mice are significantly smaller (20.9 1.6 g) than their wild-type counterparts (31.0 0.6g, p < 0.0001). Interestingly, genechip analysis identified growth hormone transcripts up-regulated and functional analysis found appropriate pathways activated. Moreover, we found significant increase in the level of IGF1 in the plasma of wfs1 mutant mice. Taken together, wfs1 mutation induces growth retardation whereas the growth hormone pathway is activated. Further studies are needed to describe biochemical and molecular details of the growth hormone axis in the wfs1 mutant mice.
Wfs1 gene deletion causes growth retardation in mice and interferes with the growth hormone pathway.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesThe effect of CTCFL mutation on the transcriptional program in testes
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View Samples