The present study was constructed to confirm previous findings that mice on a high fat diet (HFD) treated by subcutaneous injection with exenatide (EXE) at 3g/kg once daily for 6 weeks develop exocrine pancreatic injury (Rouse et al. 2014). The present study included 12 weeks of EXE exposure at multiple concentrations (3, 10, or 30 g/kg) with multiple endpoints (histopathology evaluations, immunoassay for cytokines, immunostaining of the pancreas, serum chemistries and measurement of trypsin, amylase, and, lipase, and gene expression profiles). Time- and dose-dependent exocrine pancreatic injury was observed in mice associated with EXE exposure in a HFD environment. The time- and dose-dependent morphological changes identified in the pancreas involved acinar cell injury and death (autophagy, apoptosis, necrosis, and atrophy), cell adaptations (hypertrophy and hyperplasia), and cell survival (regeneration) accompanied with varying degrees of inflammatory response leading to secondary injury in pancreatic blood vessels, ducts, and adipose tissues. Gene expression profiles supported the presence of increased signaling for cell survival and altered lipid metabolism. The potential for EXE to cause acute or early chronic pancreatic injury was identified in a HFD environment. In human disease, the influence of pancreatitis risk factors or pre-existing chronic pancreatitis on this injury potential requires further investigation.
Extended exenatide administration enhances lipid metabolism and exacerbates pancreatic injury in mice on a high fat, high carbohydrate diet.
Sex, Specimen part
View SamplesFamilial pulmonary arterial hypertension (fPAH) is associated with mutations in BMPR2. Many of these mutations occur in the BMPR2 tail domain, leaving the SMAD functions intact. In order to determine the in vivo consequences of BMPR2 tail domain mutation, we created a smooth-muscle specific doxycycline inducible BMPR2 mutation with an arginine to termination mutation at amino acid 899. When these SM22-rtTA x TetO7-BMPR2R899X mice had transgene induced for 9 weeks, starting at 4 weeks of age, they universally developed pulmonary vascular pruning as assessed by fluorescent microangiography. Approximately half the time the induced animals developed elevated right ventricular systolic pressures (RVSP), associated with extensive pruning, muscularization of small pulmonary vessels, and development of large structural pulmonary vascular changes. These lesions included large numbers of macrophages and T-cells in their adventitial compartment, as well as CD133 positive cells in the lumen. Small vessels filled with CD45 positive and sometimes CD3 positive cells were a common feature in all SM22-rtTA x TetO7-BMPR2R899X mice. Gene array experiments show changes in stress response, muscle organization and function, proliferation and apoptosis, and developmental pathways before RVSP increases. Our results show that the primary phenotypic result of BMPR2 tail domain mutation in smooth muscle is pulmonary vascular pruning leading to elevated RVSP, associated with early dysregulation in multiple pathways with clear relevance to PAH. This model should be useful to the research community in examining early molecular and physical events in the development of PAH, and as a platform to validate potential treatments.
Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions.
No sample metadata fields
View SamplesInterleukin 2 (IL-2), a cytokine linked to human autoimmune diseases, limits IL-17 production. We show that deletion of Stat3 in T cells abrogates IL-17 production and attenuates autoimmunity associated with IL-2 deficiency. While STAT3 induces IL-17 and RORt and inhibits Foxp3, IL-2 inhibited IL-17 independently of Foxp3 and RORt. We found that STAT3 and STAT5 bound to multiple common sites across the Il17 genetic locus. The induction of STAT5 binding by IL-2 was associated with a reduction in STAT3 binding at these sites and the inhibition of associated active epigenetic marks. Titrating the relative activation of STAT3 and STAT5 modulated TH17 cell specification. Thus, the balance rather than the absolute magnitude of these signals determines the propensity of cells to make a key inflammatory cytokine.
Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5.
Specimen part
View SamplesIschemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand, lipopolysaccharide (LPS) or the TLR9 ligand, unmethylated CpG ODNs prior to transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain and blood genomic profiles in response to preconditioning with these TLR ligands and to preconditioning via exposure to brief ischemia.
Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury.
Specimen part, Treatment
View SamplesKnockdown of the transcription factor PU.1 (Spi1) leads to acute myeloid leukemia (AML) in mice. We examined the transcriptome of PU.1 knockdown hematopoietic stem cells (HSC) in the preleukemic phase by linear amplification and genome-wide array analysis to identify transcriptional changes preceding malignant transformation. Hierarchical cluster analysis and principal component analysis clearly distinguished PU.1 knockdown from wildtype HSC. Jun family transcription factors c-Jun and JunB were among the top downregulated targets. Retroviral restoration of c-Jun expression in bone marrow cells of preleukemic mice partially rescued the PU.1-initiated myelomonocytic differentiation block. Lentiviral restoration of JunB at the leukemic stage led to reduced clonogenic growth, loss of leukemic self-renewal capacity, and prevented leukemia in transplanted NOD-SCID mice. Examination of 305 AML patients confirmed the correlation between PU.1 and JunB downregulation and suggests its relevance in human disease. These results delineate a transcriptional pattern that precedes the leukemic transformation in PU.1 knockdown HSC and demonstrate that decreased levels of c-Jun and JunB contribute to the development of PU.1-induced AML by blocking differentiation (c-Jun) and increasing self-renewal (JunB). Therefore, examination of disturbed gene expression in HSC can identify genes whose dysregulation is essential for leukemic stem cell function and are targets for therapeutic interventions.
Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells.
No sample metadata fields
View SamplesThe biology of chronic myeloid leukemia (CML)-stem cells is still incompletely understood. Therefore, we previously developed an inducible transgenic mouse model in which stem cell targeted induction of BCR-ABL expression leads to chronic phase CML-like disease. Here, we now demonstrate that the disease is transplantable using BCR-ABL positive LSK cells (lin-Sca-1+c-kit+). Interestingly, the phenotype is enhanced when unfractionated bone marrow (BM) cells are transplanted. However, neither progenitor cells (lin-Sca-1-c-kit+) nor mature granulocytes (CD11b+Gr-1+), or potential stem cell niche cells were able to transmit the disease or alter the phenotype. The phenotype was largely independent of BCR ABL priming prior to transplant. However, BCR-ABL abrogated the potential of LSK cells to induce full blown disease in secondary recipients. Subsequently, we found that BCR-ABL increased the fraction of multipotent progenitor cells (MPP) at the expense of long term HSC (LT-HSC) in the BM. Microarray analyses of LSK cells revealed that BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development. Our results suggest that BCR-ABL induces differentiation of LT-HSC and decreases their self renewal capacity. Furthermore, reversion of BCR-ABL eradicates mature cells while leukemic stem cells persist, giving rise to relapsed CML upon re-induction of BCR-ABL.
BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells.
Specimen part
View SamplesPreimplantation Genetic Testing (PGT), which encompasses both Preimplantation Genetic Diagnosis (PGD) and Preimplantation Genetic Screening (PGS), is a form of prenatal screening done on embryos conceived through assisted reproduction techniques (ART) prior to the initiation of pregnancy to ensure that only select embryos are used for transfer. PGT is typically performed on 8-cell embryos derived from either in vitro fertilization or intracytoplasmic sperm injection (ICSI) followed by extended culture. PGT requires a highly invasive embryo biopsy procedure that involves 1) incubating embryos in divalent-cation-deficient medium to disrupt cell adhesion, 2) breaching the protective zona pellucida with acid Tyrodes, laser drilling, or mechanical force and 3) aspirating one or two blastomeres. In this study we developed a mouse model of the embryo biopsy procedure inherent to PGT to determine the effect of various aspects of the procedure (incubation in Ca2+/Mg2+-free medium (CMF), acid Tyrodes treatment, blastomere aspiration), performed individually or in combination, on global patterns of gene expression in the resulting blastocysts.
The effect of blastomere biopsy on preimplantation mouse embryo development and global gene expression.
Sex
View SamplesTo characterize genes, pathways, and transcriptional regulators enriched in the mouse cornea, we compared the expression profiles of whole mouse cornea, bladder, esophagus, lung, proximal small intestine, skin, stomach, and trachea.
The Ets transcription factor EHF as a regulator of cornea epithelial cell identity.
Specimen part
View SamplesPurpose: The DBA/2J mouse is a model for secondary angle-closure glaucoma due to iris atrophy and pigment dispersion, which ultimately leads to increased intraocular pressure (IOP). We sought to correlate changes in retinal gene expression with glaucoma-like pathology by performing microarray analysis of retinal RNA from DBA/2J mice at 3 months before disease onset, and at 8 months, after IOP elevation. Methods: IOP was monitored monthly in DBA/2J animals by Tono-Pen and animals with normal (3 months) or elevated IOP (8 months) were identified. RNA was prepared from 3 individual retinas at each age, and the RNA was amplified and used to generate biotin-labeled probe for high density mouse Affymetrix arrays (U430.2). A subset of genes was selected for confirmation by quantitative RT-PCR using independent retina samples from DBA/2J animals at 3, 5 and 8 months of age, and compared to retinas from C57BL/6J control animals at 3 and 8 months. Results: There were changes in expression of 68 genes, with 32 genes increasing and 36 genes decreasing at 8 months versus 3 months. Upregulated genes were associated with immune response, glial activation, signaling and gene expression, while down-regulated genes included multiple crystallin genes. Significant changes in 9 upregulated genes and 2 downregulated genes were confirmed by quantitative RT-PCR, with some showing changes in expression by 5 months. Conclusions: DBA/2J retina shows evidence for glial activation and an immune-related response following IOP elevation, similar to what has been reported following acute elevation of IOP in other models.
Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma.
Age
View SamplesMurine healthy tissue samples, DCIS and invasive mammary tumors were analyzed in order to identify marker genes which show enhanced expresssion in DCIS and invasive ductal carcinomas.
Identification of early molecular markers for breast cancer.
Specimen part
View Samples