Endothelial inflammation contributes to the pathogenesis of numerous human diseases; however, the role of tumor endothelial inflammation in the growth of experimental tumors and its influence on the prognosis of human cancers is less understood. TNF-, an important mediator of tumor stromal inflammation, is known to target the tumor vasculature. In this study, we demonstrate that B16-F1 melanomas grew more rapidly in C57BL/6 wild-type (WT) mice than in syngeneic mice with germline deletions of both TNF- receptors (KO). This enhanced tumor growth was associated with increased COX2 inflammatory expression in WT tumor endothelium compared to endothelium in KO mice. We purified endothelial cells from WT and KO tumors and characterized dysregulated gene expression, which ultimately formed the basis of a 6-gene Inflammation-Related Endothelial-derived Gene (IREG) signature. This inflammatory signature expressed in WT tumor endothelial cells was trained in human cancer datasets and predicted a poor clinical outcome in breast cancer, colon cancer, lung cancer and glioma. Consistent with this observation, conditioned media from human endothelial cells treated with pro-inflammatory cytokines (TNF- and interferons) accelerated the growth of human colon and breast tumors in immune-deprived mice as compared with conditioned media from untreated endothelial cells. These findings demonstrate that activation of endothelial inflammatory pathways contributes to tumor growth and progression in diverse human cancers.
Tumor endothelial inflammation predicts clinical outcome in diverse human cancers.
Specimen part
View SamplesHigh-throughput gene expression profiling has become an important tool for investigating transcriptional activity in a variety of biological samples. To date, the vast majority of these experiments have focused on specific biological processes and perturbations. Here, we profiled gene expression from a diverse array of normal tissues, organs, and cell lines in mice. Keywords: multiple tissues
Expression analysis of G Protein-Coupled Receptors in mouse macrophages.
No sample metadata fields
View Samples