This SuperSeries is composed of the SubSeries listed below.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View SamplesThese studies adress differential changes in gene expression between sleep deprived and control mice. We profiled gene expression at four time points across the 24H Light/Dark cycle to take into account circadian influences and used three different inbred strains to understand the influence of genetic background.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View SamplesTo gain insight into the molecular changes of sleep need, this study addresses gene expression changes in a subpopulation of neurons selectively activated by sleep deprivation. Whole brain expression analyses after 6h sleep deprivation clearly indicate that Homer1a is the best index of sleep need, consistently in all mouse strains analyzed. Transgenic mice expressing a FLAG-tagged poly(A)-binding protein (PABP) under the control of Homer1a promoter were generated. Because PABP binds the poly(A) tails of mRNA, affinity purification of FLAG-tagged PABP proteins from whole brain lysates, is expected to co-precipitate all mRNAs from neurons expressing Homer1a. Three other activity-induced genes (Ptgs2, Jph3, and Nptx2) were identified by this technique to be over-expressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View SamplesNarcolepsy is a sleep disorder characterized by excessive daytime sleepiness and attacks of muscle atonia triggered by strong emotions (cataplexy). The best biological marker of narcolepsy is orexin deficiency with dramatic loss in hypothalamic orexin-producing neurons. Together with a tight HLA and T-cell receptor alpha(5) association, narcolepsy is believed to be autoimmune although all attempts to prove it have failed.To characterize orexin specific peptides we produced a transgenic mouse model to access to the orexin neurons transcription profile. We generated BAC-based transgenic mice by replacing the orexin coding sequence by a flag-tagged poly(A) binding protein (Pabp1) cDNA sequence. The basis of this construct is to take advantage of the ability of Pabp1 to bind to the poly(A) tails of mRNAs in vivo. Thus mRNAs from orexin cells are expected to be enriched by cross-linking them to the flag-tagged PABP and then co-immunoprecipitating this complex with a specific anti-flag monoclonal antibody.
Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients.
Age
View Samples