The endocytic receptor megalin constitutes the main pathway for clearance of plasma proteins from the glomerular filtrate in the proximal tubules. However, little is know about the mechanisms that control receptor activity. A widely discussed hypothesis states that the intracellular domain (ICD) of megalin, released upon ligand binding, acts as a transcription regulator to suppress receptor expression - a mechanism proposed to safeguard the proximal tubules from protein overload. Here, we have put this hypothesis to the test by generating a mouse model co-expressing the soluble ICD and the full-length receptor. Despite pronounced expression in the proximal tubules, the ICD failed to exert any effects on renal proximal tubular function such as megalin expression, protein retrieval, or renal gene transcription. Thus, our data argue that the ICD does not play a role in regulation of megalin activity in vivo in the proximal tubules.
The soluble intracellular domain of megalin does not affect renal proximal tubular function in vivo.
Sex, Age, Specimen part
View SamplesThe Runx genes are important in development and cancer, where they can act either as oncogenes or tumour supressors. We compared the effects of ectopic Runx expression in established fibroblasts, where all three genes produce an indistinguishable phenotype entailing epithelioid morphology and increased cell survival under stress conditions. Gene array analysis revealed a strongly overlapping transcriptional signature, with no examples of opposing regulation of the same target gene. A common set of 50 highly regulated genes was identified after further filtering on regulation by inducible RUNX1-ER. This set revealed a strong bias toward genes with annotated roles in cancer and development, and a preponderance of targets encoding extracellular or surface proteins reflecting the marked effects of Runx on cell adhesion.
Gene array analysis reveals a common Runx transcriptional programme controlling cell adhesion and survival.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation.
Specimen part, Cell line
View SamplesIkaros family DNA binding proteins are critical regulators of B cell development. To identify Ikaros-regulated genes in pre-B cells we performed gene expression studies at enhanced temporal resolution.
Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver.
Sex, Specimen part, Treatment, Time
View Samples29-32 days old male mice where either treated with Phenobarbital or untreated
Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver.
Sex, Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.
Sex, Age, Specimen part, Treatment, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.
Sex, Specimen part, Treatment, Subject
View SamplesEvidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.
Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.
Sex, Specimen part, Treatment, Subject
View SamplesThe process of hepatocarcinogenesis in the diethylnitrosamine (DEN) initiation/phenobarbital (PB) promotion mouse model involves the selective clonal outgrowth of cells harboring oncogene mutations in Ha-ras, B-raf, or Ctnnb1. Here, we have characterized mouse liver tumors harboring either Ctnnb1 or Ha-ras mutations via integrated molecular profiling at the transcriptional and translational and post-translational levels. In addition, metabolites of the intermediary metabolism were quantified by high resultion 1H magic angle nuclear magnetic resonance (HR-MAS NMR). We have identified tumor characteristic genotype-specific differences in mRNA and miRNA expression, protein levels, and post-translational modifications and in metabolite levels that facilitate the molecular and biochemical stratification of tumor phenotypes. Bioinformatic integration of these data at the pathway level led to novel insights into tumor genotype-specific aberrant cell signaling and in particular to a better understanding of alterations in pathways of the cell intermediary metabolism, which are driven by the constitutive activation of the -Catenin and Ha-ras oncoproteins in tumors of the two genotypes.
Ha-ras and β-catenin oncoproteins orchestrate metabolic programs in mouse liver tumors.
Sex, Specimen part
View Samples