Intestinal polyposis, a precancerous neoplasia, results primarily from an abnormal increase in the number of crypts. Crypts contain intestinal stem cells (ISCs). Thus intestinal polyposis provides an ideal condition for studying stem cell involvement in polyp/tumor formation. Using a conditional knock-out mouse model, we found that the tumor suppressor Phosphatase of Tension homolog (PTEN) governs the proliferation rate and number of ISCs and loss of PTEN results in an excess of ISCs. In PTEN mutants, excess ISCs initiate de-novo crypt formation and crypt fission, recapitulating crypt production in fetal/neonatal intestine. Microarray studies were used to profile the changes in gene expression that occurred when PTEN was knocked out in the intestine.
PTEN-deficient intestinal stem cells initiate intestinal polyposis.
No sample metadata fields
View SamplesThe expression of the small molecular weight heat shock protein (Hsp) H11 kinase/Hsp22 (Hsp22) is restricted to a limited number of tissues, including the heart and skeletal muscle, both in rodents and in humans. We generated a mouse knockout (KO) model, and investigated the role of Hsp22 in regulating cardiac hypertrophy in response to pressure overload. We compared gene expression profiles between WT and KO mice in basal condition and three days pressure overload after transverse aortic constriction (TAC). These data illustrated a novel mechanism of Hsp22-related gene expression in response to cardiac stress.
H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload.
Sex, Specimen part
View Samples