We compare the transcriptome of two different clones of multipotent adult progenitor cells (MAPCs) using Affymetrix arrays.
Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells.
No sample metadata fields
View SamplesWe report high-throughput profiling of gene expression from whole zebrafish ventricles. We profile mRNA in uninjured ventricles and those undergoing regeneration 14 days after genetic ablation. This study provides a framework for understanding transcriptional changes during adult models of regeneration. Overall design: Examination of gene expression in cardiomyocytes under different states of proliferation.
Resolving Heart Regeneration by Replacement Histone Profiling.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Low-grade and high-grade mammary carcinomas in WAP-T transgenic mice are independent entities distinguished by Met expression.
Specimen part, Disease stage, Time
View SamplesTransgenic expression in mice of two synergistically acting SV40 early region encoded proteins, large (LT) and small (sT) tumor antigens, in the mammary epithelium recapitulates loss of p53 and Rb function and deregulation of PP2A-controlled mitogenic pathways in human breast cancer. In primiparous mice, WAP-promoter driven expression of SV40 proteins induces well and poorly differentiated mammary adenocarcinomas. We performed a correlative aCGH and gene expression analysis of 25 monofocal tumors, representing four histopathological grades, to explore the molecular traits of SV40-induced mammary tumors and to emphasize the relevance of this tumor model for human breast tumorigenesis.
Low-grade and high-grade mammary carcinomas in WAP-T transgenic mice are independent entities distinguished by Met expression.
Specimen part, Time
View SamplesFoxp3+ regulatory T (Treg) cells prevent inflammatory disease but the mechanistic basis of suppression is not understood completely . Gene silencing by RNA interference can act in a cell-autonomous and non-cell-autonomous manner, providing mechanisms of inter-cellular regulation. Here, we demonstrate that non-cell-autonomous gene silencing, mediated by miRNA-containing exosomes, is a mechanism employed by Treg cells to suppress T cell-mediated disease. Treg cells transferred microRNAs (miRNA) to various immune cells, including T helper 1 (Th1) cells, suppressing Th1 cell proliferation and cytokine secretion. Use of Dicer-deficient or Rab27a and Rab27b double-deficient Treg cells to disrupt miRNA-biogenesis or the exosomal pathway, respectively, established a requirement for miRNAs and exosomes for Treg cell-mediated suppression. Transcriptional analysis and miRNA inhibitor studies showed that exosome-mediated transfer of Let-7d from Treg cell to Th1 cells contributed to suppression and prevention of systemic disease. These studies reveal a mechanism of Treg cell-mediated suppression mediated by miRNA-containing exosomes.
MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells.
Specimen part
View Samples