Barrier integrity is central to the maintenance of a healthy immunological homeostasis. Impaired skin barrier function is linked with enhanced allergen sensitization and the development of diseases such as atopic dermatitis (AD), which can precede the development of other allergic diseases such as food allergies and asthma. Epidemiological evidence indicates that children suffering from allergies have lower levels of dietary fibre-derived short-chain fatty acids (SCFA). Using an experimental model of AD, we report that a fermentable fibre-rich diet alleviates AD severity and systemic allergen sensitization. The gut-skin axis underpins this phenomenon through SCFA, which strengthen skin barrier integrity by altering mitochondrial metabolism of epidermal keratinocytes. SCFA promote keratinocyte differentiation and the production of key structural lipids, resulting in enhanced barrier function. Our results demonstrate that dietary fibre and SCFA mitigate AD by improving barrier integrity, ultimately limiting early systemic allergen sensitization and development of disease. Overall design: 16 Samples, 4 groups in duplicate
Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation.
Genotype, Disease, Disease stage, Treatment, Subject
View Samples