The retinoblastoma cell cycle regulator pRb and the two related proteins p107 and p130 are thought to suppress cancer development both by inhibiting the G1/S transition of the cell cycle in response to growth-arrest signals and by promoting cellular differentiation. Here, we investigated the phenotype of Rb family triple knock-out (TKO) embryonic stem cells as they differentiate in vivo and in culture. Confirming the central role of the Rb gene family in cell cycle progression, TKO mouse embryos did not survive past mid-gestation and differentiating TKO cells displayed increased proliferation and cell death. However, patterning and cell fate determination were largely unaffected in these TKO embryos. Furthermore, a number of TKO cells, including in the neural lineage, were able to exit the cell cycle in G1 and terminally differentiate. This ability of Rb family TKO cells to undergo cell cycle arrest was associated with the repression of target genes for the E2F6 transcription factor, uncovering a pRb-independent control of the G1/S transition of the cell cycle. These results show that the Rb gene family is required for proper embryonic development but is not absolutely essential to induce G1 arrest and differentiation in certain lineages.
G1 arrest and differentiation can occur independently of Rb family function.
No sample metadata fields
View SamplesSTAT3 is a pleiotropic transcription factor with important functions in cytokine signalling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. Here we demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IEC). Studies in genetically engineered mice showed that epithelial STAT3 activation in DSS colitis is dependent on IL-22 rather than IL-6. IL-22 was secreted by colonic CD11c+ cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3IEC-KO mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis and pathways associated with wound healing in IEC. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.
STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing.
Specimen part
View SamplesPlasmacytoid dendritic cells (pDC) efficiently produce large amounts of type I interferon in response to TLR7 and TLR9 ligands, whereas conventional DCs (cDC) predominantly secrete high levels of the cytokines IL-10 and IL-12. The molecular basis underlying this distinct phenotype is not well understood. Here, we identified the MAPK phosphatase Dusp9/MKP-4 by transcriptome analysis as selectively expressed in pDC, but not cDC. We confirmed the constitutive expression of Dusp9 at the protein level in pDC generated in vitro by culture with Flt3L and ex vivo in sorted splenic pDC. Dusp9 expression was low in B220- bone marrow precursors and was up-regulated during pDC differentiation, concomitant with established pDC markers. Higher expression of Dusp9 in pDC correlated with impaired phosphorylation of the MAPK ERK1/2 upon TLR9 stimulation. Notably, Dusp9 was not expressed at detectable levels in human pDC, although these displayed similarly impaired activation of ERK1/2 MAPK compared to cDC. Enforced retroviral expression of Dusp9 in mouse GM-CSF-induced cDC increased the expression of TLR7/9-induced IL-12p40 and IFNwhereas IL-10 levels were diminished. Taken together, our results suggest that the species-specific, selective expression of Dusp9 in murine pDC contributes to the differential cytokine/interferon output of pDC and cDC.
Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-β Production.
No sample metadata fields
View SamplesKlotho-deficient mice develop aortic valve annulus calcification by 6 weeks of age. Understanding the molecular basis by which aortic valve calcification is initiated will help define potential molecular targets which may be inhibited to reduce or prevent aortic valve calcification.
COX2 inhibition reduces aortic valve calcification in vivo.
Specimen part
View Samples