Exposure to PFOA during gestation altered the expression of genes related to fatty acid catabolism in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with activation of PPAR alpha. Non-PPAR alpha related changes were suggested as well.
Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses.
No sample metadata fields
View SamplesMost of the transcriptional changes induced by PFOS in the fetal mouse liver and lung were related to activation of PPARalpha. When compared to the transcript profiles induced by PFOA (Pubmed ID 17681415), few remarkable differences were found other than up-regulation of Cyp3a genes. Because PFOS and PFOA have been shown to differ in their mode of action in the murine neonate, these data suggest that changes related to PFOS-induced neonatal toxicity may not be evident in the fetal transcriptome at term.
Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
WAMIDEX: a web atlas of murine genomic imprinting and differential expression.
Age, Specimen part
View SamplesComparison of gene expression levels between matUPD18 and patUPD18 8.5 dpc whole embryo samples (maternal versus paternal uniparental disomy of Chr 18). Identification of highly differentially expressed transcripts.
WAMIDEX: a web atlas of murine genomic imprinting and differential expression.
Age, Specimen part
View SamplesPolyinosinic:polycytidylic acid (poly I:C) is a synthetic analogue of double-stranded (ds)RNA, a molecular pattern associated with viral infections, that is used to exacerbate inflammation in lung injury models. Despite its frequent use, there are no detailed studies of the responses elicited by a single topical administration of poly I:C to the lungs of mice. Our data provides the first demonstration that the molecular responses in the airways induced by poly I:C correlate to those observed in the lungs of COPD patients. These expression data also revealed three distinct phases of response to poly I:C, consistent with the changing inflammatory cell infiltrate in the airways. Poly I:C induced increased numbers of neutrophils and NK cells in the airways, which were blocked by CXCR2 and CCR5 antagonists, respectively. Using gene set variation analysis on representative data sets, gene sets defined by poly I:C-induced DEGs were enriched in the molecular profiles of chronic obstructive pulmonary disease (COPD), but not idiopathic pulmonary fibrosis patients. Collectively, these data represent a new approach for validating the clinical relevance of preclinical animal models and demonstrate that a dual CXCR2/CCR5 antagonist may be an effective treatment for COPD patients.
Double-stranded RNA induces molecular and inflammatory signatures that are directly relevant to COPD.
Sex, Specimen part, Time
View SamplesGenomic profiling of bleomycin- and saline-treated mice across 7 timepoints (1, 2, 7, 14, 21, 28, 35 days post treatment) was carried out in C57BL6/J mice to determine the phases of response to bleomycin treatment which correspond to onset of active pulmonary fibrosis.
Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.
Sex, Specimen part, Treatment, Time
View SamplesBiased GPCR agonists are orthosteric ligands that possess pathway-selective efficacy, activating or inhibiting only a subset of the signaling repertoire of their cognate receptors. In vitro, D-Trp12,Tyr34-bPTH(7-34) (PTH-{beta}arr), a biased agonist for the type 1 parathyroid hormone receptor, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, both PTH-{beta}arr and the conventional agonist PTH(1-34) stimulate anabolic bone formation. To understand how two PTH1R ligands with markedly different in vitro efficacy could elicit similar in vivo responses, we analyzed transcriptional profiles from calvarial bone of mice treated for 8 weeks with vehicle, PTH-{beta}arr or PTH(1-34). Treatment of wild type mice with PTH-{beta}arr primarily affected pathways that promote expansion of the osteoblast pool, notably cell cycle regulation, cell survival and migration. These responses were absent in beta-arrestin2 null mice, identifying them as downstream targets of beta-arrestin2-mediated signaling. In contrast, PTH(1-34) primarily affected pathways classically associated with enhanced bone formation, including collagen synthesis and matrix mineralization. PTH(1-34) actions were less dependent on beta-arrestin2, as might be expected of a ligand capable of G protein activation. These results illustrate the uniqueness of biased agonism in vivo and demonstrate that functional selectivity can be exploited to change the quality of GPCR efficacy.
β-arrestin-selective G protein-coupled receptor agonists engender unique biological efficacy in vivo.
Specimen part, Treatment
View SamplesCardiac hypertrophy can lead to heart failure, and is induced either by physiological stimuli eg postnatal development, chronic exercise training or pathological stimuli eg pressure or volume overload. Majority of new therapies for heart failure has mixed outcomes. A combined mouse model and oligo-array approach are used to examine whether phosphoinositide 3-kinase (p110-alpha isoform) activity is critical for maintenance of cardiac function and long-term survival in a setting of heart failure. The significance and expected outcome are to recognise genes involved in models of heart failure ie pathological- vs physiology-hypertrophy, and examine the molecular mechanisms responsible for such activity.
PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA.
No sample metadata fields
View SamplesThere is massive destruction of transcripts during maturation of mouse oocytes. The objective of this project was to identify and characterize the transcripts that are degraded versus those that are stable during the transcriptionally silent germinal vesicle (GV)-stage to metaphase II (MII)-stage transition using the microarray approach. A system for oocyte transcript amplification using both internal and 3-poly(A) priming was utilized to minimize the impact of complex variations in transcript polyadenylation prevalent during this transition. Transcripts were identified and quantified using Affymetrix Mouse Genome 430 v2.0 GeneChip. The significantly changed and stable transcripts were analyzed using Ingenuity Pathways Analysis and GenMAPP/MAPPFinder to characterize the biological themes underlying global changes in oocyte transcripts during maturation. It was concluded that the destruction of transcripts during the GV to MII transition is a selective rather than promiscuous process in mouse oocytes. In general, transcripts involved in processes that are associated with meiotic arrest at the GV-stage and the progression of oocyte maturation, such as oxidative phosphorylation, energy production, and protein synthesis and metabolism, were dramatically degraded. In contrast, transcripts encoding participants in signaling pathways essential for maintaining the unique characteristics of the MII-arrested oocyte, such as those involved in protein kinase pathways, were the most prominent among those stables.
Selective degradation of transcripts during meiotic maturation of mouse oocytes.
No sample metadata fields
View SamplesThe genetic mechanism governing the spatial patterning of teeth still remains to be elucidated. Sonic hedgehog (Shh) is one of key signaling molecules involved in the spatial patterning of teeth. By utilizing maternal transfer of 5E1 (an IgG1 monoclonal antibody against Shh protein) through the placenta to block Shh signaling, we investigated the changes in tooth patterning and in gene expression.
Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth.
Specimen part, Time
View Samples