MnTBAP reversed insulin resistance without significant alteration to gene expression
The transcriptional response to oxidative stress is part of, but not sufficient for, insulin resistance in adipocytes.
Specimen part
View SamplesTGF-beta/Smads signaling plays important roles in vascular integrity. To identify potential Smad4 target genes in brain endothelial cells that control cerebrovascular integrity, the microarray assay was performed to compare the gene expression profiles of bEnd3 transfected with Smad4-siRNA and control-siRNA.
Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch.
Specimen part, Cell line
View SamplesWe present a robust serum-free system for the rapid and efficient reprogramming of mouse somatic cells by Oct4, Sox2 and Klf4. The elimination of fetal bovine serum and oncogene c-Myc allowed reprogramming cells to be detected as early as Day 2 and reached greater than 10% of the population at Day 7 post retroviral transduction. The resulting iPS colonies were isolated with high efficiency to establish pluripotent cell lines. Based on this method, we further developed iPS-SF1 as a dedicated reprogramming medium for chemical screening and mechanistic investigations.
Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells.
Specimen part
View SamplesType 2 Diabetes, obesity and metabolic syndrome are pathologies impacting a large population worldwide where insulin resistance plays a central role. These pathologies are usually associated to a dysregulation of insulin secretion leading to a chronic exposure of the tissues to high insulin levels (i.e. hyperinsulinemia) what diminishes the concentration of key downstream elements causing insulin resistance. The complexity of the study of insulin resistance relies on the heterogeneity of the metabolic states where it’s observed. In consequence, animal models for the study of insulin resistance, can not completely recapitulate the metabolic status of insulin resistant humans, what is translated in contradictory observations. To contribute to the understanding of the mechanisms triggering insulin resistance we have developed a zebrafish model to study insulin metabolism and its associated disorders. Zebrafish embryos appeared to be sensitive to human recombinant insulin, becoming insulin resistant when exposed to a high dose of the hormone, as confirmed by glucose measurements. Moreover RNAseq-based transcriptomic profiling of these embryos revealed a strong down regulation of a number of immune relevant genes as a consequences of the exposure to hyperinsulinemia. Interestingly, as an exception, the negative immune modulator ptpn6 appeared to be up regulated in insulin resistant embryos. Knockdown of ptpn6 showed to counteract the observed down regulation of the immune system and insulin signalling pathways effects at the transcriptional level caused by hyperinsulinemia. These results show that ptpn6 is a mediator of the metabolic switch between insulin sensitive and insulin resistant states. Our zebrafish model for hyperinsulinemia has therefore demonstrated it suitability to discover novel regulators of insulin resistance. In addition, our data will be very useful to further study the function of immunological determinants in a non-obese model system. Overall design: 16 samples in total were analyzed. 4 replicates from control samples (injected with PBS) and 4 replicates of insulin injected samples at 0.5 hpi and 4 hpi. In each sample 10 embryos were pooled.
Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish.
No sample metadata fields
View SamplesOVE26 (OVE) mice provide a useful model of advanced diabetic nephropathy (DN) with respect to albuminuria and pathologies. We showed that albuminuria, reduced GFR and interstitial fibrosis, which normally take 8-9 months to develop, are more advanced in uninephrectomized OVE mice within 10 weeks of surgery, at 4.5 months of age. The accelerated progression of renal damage, especially renal fibrosis in OVE-uni mice, was also identified at the gene expression level. The hepatic fibrosis/hepatic stellate cell activation pathway was by far the most significant Ingenuity canonical pathway identified by gene array in OVE-uni mice. Many inflammatory- and immune-related pathways were found among the top pathways up-regulated in OVE-uni kidneys, including acute-phase response signaling, leukocyte extravasation, IL6, IL10, IL12 signaling, TREM1 signaling, dendritic cell maturation and the complement system. These pathways were also dramatically up-regulated in 8-month-old OVE mice (GSE20636). Nephrectomized OVE mice are a much faster alternative model for studying advanced renal disease in diabetes.
Uninephrectomy of diabetic OVE26 mice greatly accelerates albuminuria, fibrosis, inflammatory cell infiltration and changes in gene expression.
Sex, Age, Specimen part, Disease
View SamplesIschemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand, lipopolysaccharide (LPS) or the TLR9 ligand, unmethylated CpG ODNs prior to transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain and blood genomic profiles in response to preconditioning with these TLR ligands and to preconditioning via exposure to brief ischemia.
Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury.
Specimen part, Treatment
View SamplesTo study the role of hepatic nuclear factor alpha (HNF4a in hepatogenesis, we used loxP-Cre technology to eliminate it from developing mouse livers.
Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver.
Specimen part
View SamplesCcnyl1 is a newly identified genes, but the founction of which remained unclear, here we used the Ccnyl1 knockout mice to finding clues for its functional roles
CCNYL1, but Not CCNY, Cooperates with CDK16 to Regulate Spermatogenesis in Mouse.
Specimen part
View SamplesWe generated three kinds of genetically identical mouse reprogrammed cells: induced pluripotent stem cells (iPSCs), nuclear transfer embryonic stem cells (ntESCs) and iPSC-nt-ESCs that are established after successively reprogramming of iPSCs by nuclear transfer (NT). NtESCs show better developmental potential than iPSCs, whereas iPSC-nt-ESCs display worse developmental potential than iPSCs.
Different developmental potential of pluripotent stem cells generated by different reprogramming strategies.
Sex, Specimen part, Cell line
View SamplesThe purpose of this study was to determine which genes are differentially regulated by the E3 ligase Nrdp1 in CD8+ T cells after treatments with anti-CD3/CD28 Abs. The results demonstrate increased induction of cytotoxicity-associated genes in Nrdp1-/- mice than in Nrdp1+/+ mice after activation. Thus Nrdp1 may be involved in the regulation of TCR signaling.
K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8(+) T cell activation.
Specimen part, Treatment
View Samples