This SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part, Cell line
View SamplesIdentification of differentially regulated genes in the PU.1 Q202L point mutant that disrupts association with c-Jun. The goal was to identify PU.1 target genes that depend on the co-activation of PU.1 by c-Jun. Mice have normal ST-HSC but lack normal GMP, so a population of GMP-like cells (lin- Sca-1+ c-kit- FcgRII/IIIhi CD34intermediate) was used in the mutant.
No associated publication
Specimen part
View SamplesThese data suggest that co-culture with macrophages increases expression of NDRG-1 in epithelial cell lines. The finding is confirmed in 2 human epithelial cell lines, and in tissue derived from mice genetically and dietetically altered to increase macrophage infiltration of the small and large intestinal epithelium. NDRG1 is identified as a potential mediator of macrophage effects on tumorigenesis in the large and small intestine.
No associated publication
Specimen part, Cell line
View SamplesThe T-box transcription factor Tbx1 is expressed in the otic vesicle and surrounding periotic mesenchyme during inner ear development. Mesenchymal Tbx1 is essential for inner ear development, with conditional mutants displaying defects in both auditory and vestibular systems. We have previously identified reduced expression of retinoic acid metabolic genes in the periotic mesenchyme of mesoderm conditional Tbx1 mutants, using the T-Cre mouse line, implicating retinoic acid in mesenchymal-epithelial signaling downstream of Tbx1 in the periotic mesenchyme.
No associated publication
Specimen part
View SamplesThe biology of chronic myeloid leukemia (CML)-stem cells is still incompletely understood. Therefore, we previously developed an inducible transgenic mouse model in which stem cell targeted induction of BCR-ABL expression leads to chronic phase CML-like disease. Here, we now demonstrate that the disease is transplantable using BCR-ABL positive LSK cells (lin-Sca-1+c-kit+). Interestingly, the phenotype is enhanced when unfractionated bone marrow (BM) cells are transplanted. However, neither progenitor cells (lin-Sca-1-c-kit+) nor mature granulocytes (CD11b+Gr-1+), or potential stem cell niche cells were able to transmit the disease or alter the phenotype. The phenotype was largely independent of BCR ABL priming prior to transplant. However, BCR-ABL abrogated the potential of LSK cells to induce full blown disease in secondary recipients. Subsequently, we found that BCR-ABL increased the fraction of multipotent progenitor cells (MPP) at the expense of long term HSC (LT-HSC) in the BM. Microarray analyses of LSK cells revealed that BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development. Our results suggest that BCR-ABL induces differentiation of LT-HSC and decreases their self renewal capacity. Furthermore, reversion of BCR-ABL eradicates mature cells while leukemic stem cells persist, giving rise to relapsed CML upon re-induction of BCR-ABL.
BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells.
Specimen part
View SamplesThe T-box transcription factor Tbx1 is expressed in the otic vesicle and surrounding periotic mesenchyme during inner ear development. Mesenchymal Tbx1 is essential for inner ear development, with conditional mutants displaying defects in both auditory and vestibular systems. We have previously identified reduced expression of retinoic acid metabolic genes in the periotic mesenchyme of mesoderm conditional Tbx1 mutants, using the T-Cre mouse line, implicating retinoic acid in mesenchymal-epithelial signaling downstream of Tbx1 in the periotic mesenchyme.
No associated publication
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma.
No sample metadata fields
View SamplesBeyond demonstrating a critical role for progesterone receptor signaling in normal mammary epithelial proliferation, the progesterone receptor knockout mouse disclosed the progesterone receptor along with its effector pathways as key determinants of mammary neoplastic progression. Despite these advances, however, further progress in our mechanistic understanding of progesterones involvement in mammary morphogenesis and tumorigenesis is contingent upon defining the essential effector pathways responsible for transducing the progesterone signal into a mammary proliferative and/or pro-survival response. Toward this goal, a judiciously chosen acute progesterone treatment regimen together with microarray methods was applied to the mammary gland of the normal mouse to uncover new effectors that operate immediately downstream of the progesterone mammary signal. Examination of the resultant progesterone-responsive transcriptome disclosed inhibitor of differentiation or DNA binding 4 (Id4) as a molecular target acutely induced by progesterone in the murine mammary epithelium.
Transcriptional response of the murine mammary gland to acute progesterone exposure.
No sample metadata fields
View SamplesComparative analysis of cerebellar gene expression changes occurring in Sca1154Q/2Q and Sca7266Q/5Q knock-in mice
The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7.
Sex, Age
View Samples