There is growing recognition that mammalian cells produce many thousands of large intergenic transcripts. However, the functional significance of these transcripts has been particularly controversial. While there are some well-characterized examples, the vast majority (>95%) show little evidence of evolutionary conservation and have been suggested to represent transcriptional noise. Here, we report a new approach to identifying large non-coding RNAs (ncRNAs) by using chromatin-state maps to discover discrete transcriptional units intervening known protein-coding loci. Our approach identified ~1600 large multi-exonic RNAs across four mouse cell types. In sharp contrast to previous collections, these large intervening ncRNAs (lincRNAs) exhibit strong purifying selection in their genomic loci, exonic sequences, and promoter regions with greater than 95% showing clear evolutionary conservation. We also developed a novel functional genomics approach that assigns putative functions to each lincRNA, revealing a diverse range of roles for lincRNAs in processes from ES pluripotency to cell proliferation. We obtained independent functional validation for the predictions for over 100 lincRNAs, using cell-based assays. In particular, we demonstrate that specific lincRNAs are transcriptionally regulated by key transcription factors in these processes such as p53, NFKB, Sox2, Oc4, and Nanog. Together, these results define a unique collection of functional lincRNAs that are highly conserved and implicated in diverse biological processes.
No associated publication
No sample metadata fields
View SamplesExpression profiles generated during dissection of the molecular mechanisms underlying direct reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells, iPS).
Dissecting direct reprogramming through integrative genomic analysis.
No sample metadata fields
View SamplesExpression profiles for Gfap-positive astrocytes obtained by in vitro differentiation of 129SvJae x C57BL/6 murine embryonic stem (ES) cells. Generated to examine the relationship between expression levels and DNA methylation patterns.
No associated publication
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reprogramming factor expression initiates widespread targeted chromatin remodeling.
Specimen part
View SamplesDespite rapid progress in characterizing transcription factor-driven reprogramming of somatic cells to an induced pluripotent stem (iPS) cell state, many mechanistic questions still remain. To gain insight into the earliest events in the reprogramming process, we systematically analyzed the transcriptional and epigenetic changes that occur during early factor induction after discrete numbers of divisions. We observed rapid, genome-wide changes in the euchromatic histone modification, H3K4me2, at more than a thousand loci including large subsets of pluripotency or developmentally related gene promoters and enhancers. In contrast, patterns of the repressive H3K27me3 modification remained largely unchanged except for focused depletion specifically at positions where H3K4 methylation is gained. These chromatin regulatory events precede transcriptional changes within the corresponding loci. Our data provide evidence for an early, organized, and population-wide epigenetic response to ectopic reprogramming factors that clarify the temporal order through which somatic identity is reset during reprogramming.
No associated publication
Specimen part
View SamplesWe report a Jak2V617F knock-in mouse myeloproliferative neoplasm (MPN) model resembling human polycythemia vera (PV). The MPN is serially transplantable and we demonstrate that the hematopoietic stem cell (HSC) compartment has the unique capacity for disease initiation but does not have a selective competitive advantage over wild type HSCs. In contrast, myeloid progenitor populations are expanded and skewed towards the erythroid lineage, but cannot transplant the disease. Treatment with a JAK2 kinase inhibitor ameliorated the MPN phenotype, but did not eliminate the disease-initiating population. These findings provide insights into the consequences of JAK2 activation on HSC differentiation and function and have the potential to inform therapeutic approaches to JAK2V617F positive MPN.
Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells.
Specimen part
View SamplesApc, a negative regulator of the canonical Wnt signaling pathway, is a bona-fide tumor suppressor whose loss of function results in intestinal polyposis. APC is located in a commonly deleted region on human chromosome 5q, associated with myelodysplastic syndrome (MDS) suggesting that haploinsufficiency of APC contributes to the MDS phenotype. Analysis of the hematopoietic system of mice with the Apcmin allele that results in a premature stop codon and loss of function, showed no abnormality in steady state hematopoiesis. Bone marrow derived from Apcmin mice showed enhanced repopulation potential, indicating of a cell intrinsic gain of function in the long-term hematopoietic stem cell (HSC) population. However, Apcmin bone marrow was unable to repopulate secondary recipients due to loss of the quiescent HSC population. Apcmin mice developed a myelodysplastic/ myeloproliferative phenotype. Our data indicate that Wnt activation through haploinsufficiency of Apc causes insidious loss of HSC function that is only evident in serial transplantation strategies. These data provide a cautionary note for HSC expansion strategies through Wnt pathway activation, provide evidence that cell extrinsic factors can contribute to the development of myeloid disease and indicate that loss of function of APC may contribute to the phenotype observed in patients with MDS and del(5q).
No associated publication
No sample metadata fields
View SamplesThe study of induced pluripotency often relies on experimental approaches that average measurements across a large population of cells, the majority of which do not become pluripotent. Here we used high-resolution, time-lapse imaging to trace the reprogramming process over 2 weeks from single mouse embryonic fibroblasts (MEFs) to pluripotency factor-positive colonies. This enabled us to calculate a normalized cell-of-origin reprogramming efficiency that takes into account only the initial MEFs that respond to form reprogrammed colonies rather than the larger number of final colonies. Furthermore, this retrospective analysis revealed that successfully reprogramming cells undergo a rapid shift in their proliferative rate that corresponds to a reduction in cellular area. This event occurs as early as the first cell division and with similar kinetics in all cells that form induced pluripotent stem (iPS) cell colonies. These data contribute to the theoretical modeling of reprogramming and suggest that certain parts of the reprogramming process follow defined rather than stochastic steps.
Dynamic single-cell imaging of direct reprogramming reveals an early specifying event.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The impact of microRNAs on protein output.
No sample metadata fields
View SamplesAdipose tissue plays an important role in storing excess nutrients and preventing ectopic lipid accumulation in other organs. Obesity leads to excess lipid storage in adipocytes, resulting in the generation of stress signals and the derangement of metabolic functions. SIRT1 is an important regulatory sensor of nutrient availability in many metabolic tissues. Here we report that SIRT1 functions in adipose tissue to protect from the development of inflammation and obesity under normal feeding conditions, and the progression to metabolic dysfunction under dietary stress. Genetic ablation of SIRT1 from adipose tissue leads to gene expression changes that highly overlap with changes induced by high fat diet in wild type mice, suggesting that dietary stress signals inhibit the activity of SIRT1. Indeed, we show that high fat diet induces the cleavage of SIRT1 in adipose tissue by the inflammation-activated caspase-1, providing a link between dietary stress and predisposition to metabolic dysfunction.
High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction.
No sample metadata fields
View Samples