Hearts of Myh6-MeCP2 transgenic mice and wildtype littermates were rapidly dissected and flash frozen.
Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure.
Specimen part
View SamplesTranscriptom analysis of stellate sympathetic ganglia after 8 weeks of cardiac pressure overload caused by transverse aortic constriction.
Sympathetic alpha(2)-adrenoceptors prevent cardiac hypertrophy and fibrosis in mice at baseline but not after chronic pressure overload.
Sex
View SamplesChronic opiate use produces molecular and cellular adaptations in the nervous system, leading to tolerance, physical dependence and addiction. Genome-wide comparison of morphine-induced changes in brain transcription of mouse strains with different opioid-related phenotypes provides an opportunity to discover the relationship between gene expression and behavioral response to the drug.
Morphine effects on striatal transcriptome in mice.
No sample metadata fields
View SamplesIn order to study the consequences of the loss of Icsbp expression in hematopoiesis Granulocyte-Monocyte Progenitors from bone marrow were isolated from Icsbp wild type and deficient mice by flow cytometry. Global gene expression was performed using Affymetrix gene chip technology.
No associated publication
No sample metadata fields
View SamplesOBJECTIVE: MEIS1, a HOX cofactor, collaborates with multiple HOX and NUP98-HOX fusion proteins to accelerate the onset of acute myeloid leukemia (AML) through largely unknown molecular mechanisms. MATERIALS AND METHODS: To further resolve these mechanisms, we conducted a structure-function analysis of MEIS1 and gene-expression profiling, in the context of NUP98-HOXD13 (ND13) leukemogenesis. RESULTS: We show, in a murine bone marrow transplantation model, that the PBX-interaction domain, the homeodomain, and the C-terminal domain of MEIS1, are all required for leukemogenic collaboration with ND13. In contrast, the N-terminal domain of MEIS1 is dispensable for collaboration with ND13, but is required for Flt3 upregulation, indicating additional roles for MEIS1 in induction of leukemia independent of alterations in Flt3 expression. Gene-expression profiling of a cloned ND13 preleukemic cell line transduced with wild-type or Meis1 mutant forms revealed deregulation of multiple genes, including a set not previously implicated as MEIS1 targets. Chromatin immunoprecipitation revealed the in vivo occupancy of MEIS1 on regulatory sequences of Trib2, Flt3, Dlk1, Ccl3, Ccl4, Pf4, and Rgs1. Furthermore, engineered overexpression of Trib2 complements ND13 to induce AML while Ccl3 potentiates the repopulating ability of ND13. CONCLUSION: This study shows that Meis1-induced leukemogenesis with ND13 can occur in the absence of Flt3 upregulation and reveals the existence of other pathways activated by MEIS1 to promote leukemia.
Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Ccl3.
Specimen part
View SamplesPrecise 5' splice site recognition is essential for both constitutive and regulated pre-mRNA splicing. The U1 snRNP specific protein U1C is involved in this first step of spliceosome assembly and important for stabilizing early splicing complexes. We used an embryonically lethal U1C knockout mutant zebrafish, hi1371, to investigate the potential genomewide role of U1C for splicing regulation. Surprisingly, genomewide RNA-Seq analysis of mutant versus wildtype embryos revealed a large set of specific target genes that changed their alternative splicing patterns in the absence of U1C. In sum, our findings provide evidence for a new role of a general snRNP protein, U1C, as a mediator of alternative splicing regulation.
RNA-Seq analysis in mutant zebrafish reveals role of U1C protein in alternative splicing regulation.
No sample metadata fields
View SamplesDrd2 regulates striatal gene networks.
Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin.
Specimen part
View SamplesL-3,4-dihydroxyphenylalanine (levodopa) treatment is the major pharmacotherapy for Parkinson's disease. However, almost all patients receiving levodopa eventually develop debilitating involuntary movements (dyskinesia). While it is known that striatal spiny projection neurons (SPNs) are involved in the genesis of this movement disorder, the molecular basis of dyskinesia is not understood. In this study, we identify distinct cell-type-specific gene expression changes that occur in sub-classes of SPNs upon induction of a parkinsonian lesion followed by chronic levodopa treatment. We identify several hundred genes whose expression is correlated with levodopa dose, many of which are under the control of AP-1 and ERK signaling. In spite of homeostatic adaptations involving several signaling modulators, AP-1-dependent gene expression remains highly dysregulated in direct pathway SPNs (dSPNs) upon chronic levodopa treatment. We also discuss which molecular pathways are most likely to dampen abnormal dopaminoceptive signaling in spiny projection neurons, hence providing potential targets for antidyskinetic treatments in Parkinson's disease.
Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia.
Specimen part, Treatment
View SamplesPrions consist of aggregates of abnormal conformers of cellular prion protein (PrPC). They propagate by recruiting host-encoded PrPC although the critical interacting proteins and the reasons for the differences in susceptibility of distinct cell lines and populations are unknown. We derived a lineage of cell lines with markedly differing susceptibilities, unexplained by PrPC expression differences, to identify such factors. We examined the transcriptomes of prion-resistant revertants, isolated from highly susceptible cells, and identified a gene expression signature associated with susceptibility. Several of these genes encode proteins with a role in extracellular matrix (ECM) remodelling, a compartment in which disease-related PrP deposits. Loss-of-function of nine of these genes significantly increased susceptibility. Remarkably, inhibition of fibronectin 1 binding to integrin 8 by RGD peptide inhibited metalloproteinases (MMP)-2/9 whilst increasing prion propagation rates. This indicates that prion replication may be controlled by MMPs at the ECM in an integrin-dependent manner.
Identification of a gene regulatory network associated with prion replication.
Treatment
View SamplesEbf1 is a transcription factor with documented, and dose dependent, functions in both normal and malignant B-lymphocyte development. In order to understand more about the role of Ebf1 in malignant transformation, we have investigated the impact of reduced functional Ebf1 dose on early B-cell progenitors. Gene expression analysis in loss and gain of function analysis suggested that Ebf1 was involved in the regulation of genes of importance for DNA repair as well as cell survival. Investigation of the level of DNA damage in steady state as well as after induction of DNA damage by UV light supported that pro-B cells lacking one functional allele of Ebf1 display a reduced ability to repair DNA damage. This was correlated to a reduction in expression of Rad51 and combined analysis of published 4C and chromatin Immuno precipitation data suggested that this gene is a direct target for Ebf1. Even though the lack of one allele of Ebf1 did not result in any dramatic increase of tumor formation, we noted a dramatic increase in the formation of pro-B cell leukemia in mice carrying a combined heterozygote mutation in the Ebf1 and Pax5 genes. Even though the tumors were phenotypically similar and stable, we noted a large degree of molecular heterogeneity well in line with a mechanism involving impaired DNA repair. Our data support the idea that Ebf1 controls homologous DNA repair in a dose dependent manner and that this may explain the frequent involvement of Ebf1 in human leukemia
Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency.
Specimen part, Cell line, Time
View Samples