The specific contribution of the two TNF-receptors Tnfr1 and Tnfr2 to TNF-induced inflammation in the glomerulus is unknown. In mice, TNF exposure induces glomerular expression of inflammatory mediators like adhesion molecules and chemokines in vivo, and glomerular accumulation of leukocytes.
Distinct contributions of TNF receptor 1 and 2 to TNF-induced glomerular inflammation in mice.
Specimen part, Treatment
View SamplesTertiary lymphoid organs (TLOs) emerge in response to nonresolving inflammation but their roles in adaptive immunity remain unknown. Here, we explored artery TLOs (ATLOs) to delineate atherosclerosis T cell responses in apoe-/- mice during aging. Though the T cell repertoire showed systemic age-associated contractions in size and modifications in subtype composition and activation, wt and apoe-/- mice were equally affected. In contrast, ATLOs - but not wt aortae, apoe-/- aorta segments without ATLOs or atherosclerotic plaques - promoted T cell recruitment, altered characteristics of T cell motility, primed and imprinted T cells in situ, generated CD4+/FoxP3-, CD4+/FoxP3+, CD8+/FoxP3- effector and central memory cells, and converted nave CD4+/FoxP3- T cells into induced Treg cells. ATLOs also showed substantially increased antigen presentation capability by conventional dendritic cells (DCs) and monocyte-derived DCs but not by plasmacytoid DCs. Thus, the senescent immune system specifically employs ATLOs to control dichotomic atherosclerosis T cell immune responses. We assembled transcriptome maps of wt and apoe-/- aortae and aorta-draining RLNs and identified ATLOs as major sites of atherosclerosis-specific T cell responses during aging: Transcriptome atlases of wt and apoe-/- abdominal aortae and associated draining RLNs were constructed from laser capture microdissection (LCM)-based whole genome mRNA expression microarrays yielding 6 maps: wt adventitia (tissue-1); wt RLN (tissue-2); apoe-/- ATLOs (tissue-3); apoe-/- RLN (tissue-4); apoe-/- adventitia without adjacent plaques (tissue-5), and plaques (tissue-6). Several two-tissue comparisons within the transcriptome atlases are noteworthy: Unexpectedly, transcriptomes of wt and apoe-/- RLNs were virtually identical; additonal data revealed that transcriptomes of RLNs were strikingly similar to those of inguinal LNs which do not drain the aorta adventitia (as shown of India ink injection experiments of surgically exposed aortae); in sharp contrast, wt adventitia versus ATLOs revealed 1405 differentially expressed transcripts many of which encoded members of GO terms immune response and inflammatory response; the ATLO-plaque comparison also showed > 1000 differentially expressed transcripts; however, wt adventitia versus apoe-/- adventitia without plaque showed few genes (< 5 % of differentially expressed transcripts of the wt adventitia-ATLO comparison). Thus, the aorta transcriptome atlases support the conclusion that neither aorta-draining apoe-/- RLNs nor ILNs participate in atherosclerosis-specific T cell responses. In addition, they demonstrate that T cell responses in the diseased aorta are highly territorialized. Finally, these data show that the immune responses carried out in ATLOs differ significantly from those carried out in plaques. We next identified three major clusters within the transcriptome atlases through ANOVA analyses and application of strict filters: An adventitia cluster, a plaque/ATLO cluster, and a LN/plaque cluster. The total number of differentially expressed genes in each cluster were examined for GO terms immune response, inflammatory response, T cell activation, positive regulation of T cell response, and T cell proliferation. Within the adventitia cluster, similarities of transcriptomes of wt adventitia and apoe-/- adventitia without associated plaque versus ATLOs indicate that a robust number of immune response-regulating genes are selectively expressed in ATLOs which are located within a distance of few m of the adventitia without associated plaques indicating a very high degree of territoriality of the atherosclerosis T cell response. Furthermore, unlike the total number of differentially regulated transcripts, the majority of transcripts among GO terms immune response and inflammatory response, was up-regulated. Inspection of the plaque/ATLO cluster provided further information: The majority of immune response regulating genes where expressed at a higher level in ATLOs when compared to plaques though plaques also contained a significant number of immune response regulating genes; the reverse is true for genes regulating inflammation. Finally, the lymph node cluster revealed that though the majority of immune response regulating genes resides in both wt and apoe-/- RLNs (with little differences between them) ATLOs express a selected set of immune response regulating genes at a higher level when compared to LNs. In addition, the inflammatory component of ATLOs when compared to LNs is documented by the finding that many more genes regulating inflammation reside in ATLOs even when compared to those of plaques.
Generation of Aorta Transcript Atlases of Wild-Type and Apolipoprotein E-null Mice by Laser Capture Microdissection-Based mRNA Expression Microarrays.
Sex, Age, Specimen part
View SamplesWe previously observed that formation of aorta and innominate artery atherosclerotic lesions in the intima of hyperlipidemic apoE-deficient mice but not wild-type mice was accompanied by a marked age-dependent adventitial T cell infiltration. As the mice aged, adventitial T cells formed T/T cell-, T/B cell-, and T/B/dendritic cell aggregates adjacent to atherosclerotic lesions. Some of the adventitial infiltrates formed large clusters of various immune cells including T cells, B cells (centrocytes, follicular mantle cells), dendritic cells, follicular dendritic cells, and plasma cells with preferential formation in the suprarenal portion of the abdominal aorta. These data demonstrated that the immune lineage cell composition of atherosclerotic lesions and adventitia were distinct: The macrophage-foam cell-, T cell-, and SMC-dominated cell composition of atherosclerosis lesions versus the presence of immune cells capable of carrying out antigen-dependent T cell-driven humoral immune responses in the adventitia also indicated that immune reactions carried out in lesions or the adventitia are fundamentaly different. To distinguish between immunity-regulating genes in atherosclerosis lesions versus the adventitia, a combination of microarray profiling and laser capture microdissection was used. Stringent filters revealed 1163 differentially up-regulated probesets in apoE-/- mouse aortae at 78 weeks (w) versus 6 w. A fuzzy c-means cluster algorythm identified 2 clusters that significantly differed in their slope angles between time points: An apparent atherosclerosis cluster consisted of 771 probesets and an apparent adventitia cluster consisted of 392 probesets. Up-regulated genes at 32 w mirrored the influx of monocyte/macrophages into intima lesions whereas genes up-regulated between 32-78 w mirrored adventitial inflammation. To segregate both clusters into separate gene ontology (GO) molecular function groups, we determined statistically significant up-regulation (unpaired Student t-test; p < 0.05) between 6-32 w for the atherosclerosis cluster and between 32-78 w for the adventitia cluster. Among others, GO molecular function terms cytokine activity, cytokine binding, and immunoglobulin binding in the atherosclerosis cluster and cytokine activity, chemokine receptor activity, and antigen binding in the ATLO cluster suggested candidate genes in relation to inflammation triggered by macrophages or adventitia infiltration, respectively. Among other prototype atherosclerosis genes such as Itgax (complement receptor 4), Cd68, Lysz (lysozyme), Vcam1, and Icam1, the atherosclerosis cluster showed markedly overrepresented prototype macrophage/foam cell genes regulating inflammation in cytokine activity (GO: 0005125): Spp1 (osteopontin) and Il6; in cytokine binding (GO: 0019955) Cd74, Il10rb, Ccr2, and Ccr5; and in immunoglobulin binding (GO: 00119865) the proinflammatory galactose-binding lectin Lgals3, as well as genes in scavenger receptor activity and lipid transporter activity. By contrast, the adventitia cluster showed overrepresented genes regulating B cell recruitment, B cell maturation, germinal center formation, and autoimmunity in cytokine activity including Cxcl13, Ccl21, and Ltb, in CXC chemokine receptor activity the secondary lymphoid organ counterreceptor of CXCL13 Blr1 (also known as Cxcr5), Cxcr3, and Cxcr6; and in antigen binding several histocompatibility-2 loci and various markedly expressed immunoglobulin genes. As embryonic lymph node development and tertiary lymphoid organ neogenesis share common features signal intensities of genes specifying the GO molecular function term lymph node development (GO: 0048535) were examined in arrays prepared from wild-type and apoE-/- aortae. These results showed that Id2, Nfkb1, and Ltbr were constitutively expressed at significant levels in aortae of both mouse genotypes whereas other genes including Lta, Ltb, Glycam1, and the two lymphorganogenic genes Cxcl13 and Ccl21 were induced at 78 w in apoE-deficient aortae only. Thus, genes expressed by macrophage-foam cells and genes regulating ATLO neogenesis, embryonic lymph node development, or B cell maturation were constitutively expressed in the arterial wall in both genotypes or emerged in a stepwise fashion at 32 w and 78 w. To verify microarray signal intensity data, separate aortae extracts were examined by quantitative RT-PCR (QRT-PCR) analyses of wild-type and apoE-deficient mice at 32 and 78 w. These data showed that array signal values accurately reflected gene transcripts. Cell lineage analyses of the adventitial infiltrate and kinetic aorta microarray- and QRT-PCR analyses thus provided circumstantial evidence that immune responses in atherosclerosis intima lesions and the adventitia were distinct. To examine this possibility further, we selected areas of the abdominal aorta burdened with advanced lesions and separated lesions and corresponding adventitial infiltrates of 78 w old apoE-deficient mice by laser dissection microscopy. In addition, adventitiae of aorta segments that were not associated with adjacent lesions and adventitiae of wild-type mice were prepared. Consistent with the lack of a major adventitial leukocyte infiltration, wild-type adventitiae showed gene expression levels that were similar to lesion-free adventitiae of apoE-deficient mice indicating that atherosclerotic lesions directly affected adventitial inflammation in a segmental fashion. Stringent filter criteria identified genes that were differentially expressed in adventitiae and atherosclerotic lesions. Statistical analyses of overrepresented genes in GO molecular function or biological process groups were particularly instructive in cytokine activity, cytokine binding, antigen processing and presentation as well as in lymph node development. Thus, adventitiae in aorta segments with associated atherosclerotic lesions in cytokine activity showed overrepresentation of genes known to be associated with tertiary lymphoid organ formation including Cxcl13, Ccl21, and Ltb, whereas atherosclerotic lesions showed overrepresentation of prototype atherosclerosis-associated genes Ssp1 (osteopontin), Bmp4 (bone morphogenic protein 4), and Cxc3cl1 (fractalkine); in cytokine binding adventitiae showed overrepresentation of receptors implicated in B cell immunity and autoimmunity including Brl1 (counterreceptor for CXCL13), Ccr7, Tnfrsf4, and Cxcr3 whereas lesions showed overrepresentation of inflammatory mediator receptors including Tnfrs1b, Tgfbr1, and Il7r; moreover, in antigen processing and presentation, adventitiae showed overrepresentation of several histocompatibility loci; additional adventitial gene expression overrepresentations were observed in lymph node development (Fas, SpiB, Ltb, Flt3) whereas lesions showed expression of prototype macrophage genes including Tlr4, Tgfb1, and Tgfb2. These data provide comprehensive topographical transcriptome information in adventitial tissue adjacent to atherosclerotic lesions versus lesions and are expected to form the basis for future cell lineage expression analyses using single cell detection methodology including ISH.
Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice.
Sex, Age, Specimen part
View SamplesMouse aorta smooth muscle cells (SMCs) express TNF receptor superfamily member 1A (TNFR1) and lymphotoxin receptor (LTR). Circumstantial evidence has linked the SMC LTR to tertiary lymphoid organogenesis in diseased aortae of hyperlipidemic mice. Here, we explored potential roles of TNFR1 and LTR activation in cultured SMCs. TNFR1 signaling by TNF activated the classical RelA NF-B pathway, whereas LTR signaling by agonistic anti LTR antibody activated both the classical RelA and alternative RelB NF-B pathways. Addition of both agonists synergized to enhance p100 inhibitor processing to the p52 subunit of NF-B and promoted its nuclear translocation suggesting RelA-RelB cross-talk in transcription regulation. Correspondingly, microarrays showed that simultaneous TNFR1 and LTR activation when compared to activation of single receptors was followed by markedly elevated levels of mRNAs encoding leukocyte homeostatic chemokines CCL2, CCL5, CXCL1, and CX3CL1. Furthermore, SMCs acquired prototypical features of mesenchymal cells known as lymphoid tissue organizers (LTOs), which control tertiary lymphoid organogenesis in autoimmune diseases, through hyperinduction of CCL7, CCL9, CXCL13, CCL19, CXCL16, VCAM-1, and ICAM-1. Experiments with ltbr-/- SMCs suggested that the LTR-RelB activation component of NF-B signaling was obligatory to generate the LTO phenotype. TNFR1-LTR crosstalk also resulted in augmented synthesis and prolonged secretion of lymphorganogenic chemokine proteins into the culture medium. Thus, combined TNFR1-LTR signaling triggers SMC transdifferentiation into a phenotype that strikingly resembles LTOs. LTO-like SMCs may adopt a thus far unrecognized role in diseased arteries, i.e. to coordinate tertiary lymphoid organogenesis in atherosclerosis, aortic aneurysm, and transplant vasculopathy.
Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells on combined tumor necrosis factor receptor-1/lymphotoxin beta-receptor NF-kappaB signaling.
No sample metadata fields
View SamplesAortae of 32 weeks old apoE mice versus wild type mice on a C57BL/6J Background.
No associated publication
No sample metadata fields
View SamplesCultured mouse aorta endothelial cells (from 8-12 weeks old C57BL/6J mice, passage 2-3) were exposed to phosphate buffered saline (control) or a combination of TNFalpha plus agonistic alpha-LTR antibody for 24 hours as described in Ltzer et al. 2009. Arterioscler. Thromb. Vasc. Biol., in press. Total RNA was extracted and microarrays were prepared.
Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells on combined tumor necrosis factor receptor-1/lymphotoxin beta-receptor NF-kappaB signaling.
Specimen part
View SamplesFoxp1 is expressed throughout B cell development, but the physiological functions in mature B lymphocytes are unknown. We therefore evaluated differential gene expression in Foxp1-deficient B cells, with or
Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells.
Specimen part
View SamplesAmong the multiple mechanisms that control the intensity and duration of macrophage activation, the development of a state of refractoriness to a second stimulation in cells treated with LPS has long been recognized. Release of inhibitory cytokines and alterations in intracellular signaling pathways may be involved in the development of LPS tolerance. Although a number of molecules have been implicated, a detailed picture of the molecular changes in LPS tolerance is still missing. We have used a genome-wide gene expression analysis approach to (i) define which fraction of LPS target genes are subject to tolerance induction and (ii) identify genes that are expressed at high levels in tolerant macrophages. Our data show that in LPS tolerant macrophages the vast majority of LPS-induced gene expression is abrogated. The extent of tolerance induction varies for individual genes, and a small subset appears to be excepted. Compared to other negative control mechanisms of macrophages, e.g. IL-10-induced deactivation, LPS-tolerance inhibits a much wider range of transcriptional targets. Some previously described negative regulators of TLR-signaling (e.g. IRAK-M) were confirmed as expressed at higher levels in LPS-tolerant macrophages. In addition, we discuss other potential players in LPS tolerance identified in this group of genes.
A genome-wide analysis of LPS tolerance in macrophages.
No sample metadata fields
View SamplesType I Interferons encompasses a large family of closely related cytokines comprising of at least 13 IFN- isotypes and single IFN-. Both IFN- and IFN- exert their activity through a common receptor IFNAR. Type I Interferons have broad regulatory effects and various subtypes of dendritic cells are influenced by this cytokines. In our study we asked question whether the low, constitutive levels of type I Interferons produced under steady state conditions are important for proper function of splenic conventional dendritic cells.
Absence of IFN-beta impairs antigen presentation capacity of splenic dendritic cells via down-regulation of heat shock protein 70.
Sex, Age, Specimen part
View SamplesThe goal of this project was to characterize DCs from lymphopenic mice, like RAG (recombination activated gene) deficient mice and to examine the influence of mature B and T cells on the antigen presenting ability of splenic cDCs. We demonstrate how cellular cross-talk can shape the character and function of cDCs. Lymphopenic conditions, where splenic cDCs have to develop and differentiate, drastically change their character and their ability to cross-present soluble antigen.
Immunoglobulins drive terminal maturation of splenic dendritic cells.
Sex, Age, Specimen part
View Samples