Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with Squamous Cell Carcinoma has identified SMAD4 to be frequently mutated. Here we used a novel mouse model to determine the molecular mechanisms regulated by loss of Smad4 which lead to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium developed metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determined that loss of PTEN and SMAD4 resulted in activation of the ELF3 and the ErbB2 pathway due to decreased ERRFI1s expression, a negative regulator of ERBB2 in mice and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuated tumor progression and cell invasion, respectively. Expression profiles analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both prognostic biomarkers and therapeutic drug targets for treating lung cancer.
ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function.
Sex, Age, Specimen part, Treatment
View SamplesThe role of Gata2 in regulating uterine function including fertility, implantation, decidualization and P4 signaling in the mouse was investigated by the conditional ablation of Gata2 in the uterus using the (PR-cre) mouse and ChIP-seq for in vivo GATA2 binding sites in the murine uterus upon acute P4 administration.
A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part
View SamplesPolycomb group (PcG) proteins are epigenetic silencers whose dysregulation is frequently linked to cancer via mechanisms that remain unclear. Using conditional knock-out mice in a colitis-associated colorectal cancer (CAC) model, we found that Bmi1 and Mel18 are important initiation and maintenance factors during CAC tumorigenesis. Epithelial depletion of both Bmi1 and Mel18, but not either gene alone, significantly reduces tumor growth and multiplicity.
BMI1 and MEL18 Promote Colitis-Associated Cancer in Mice via REG3B and STAT3.
Specimen part
View SamplesThe main goal of our study is to identify the molecular events that determine the gonadal identity in mammals. Although testis and ovary arise from a common embryonic primordium, they represent outcomes of opposing fate determination. This decision to differentiate into a testis or an ovary hinges upon the balance between two antagonizing factors, pro-testis SOX9 and pro-ovary -catenin.
Gonadal Identity in the Absence of Pro-Testis Factor SOX9 and Pro-Ovary Factor Beta-Catenin in Mice.
Specimen part
View SamplesProtective roles of Nrf2, a key transcription factor for antioxidant and defense genes, have been determined in oxidative lung injury, and health benefits of Nrf2 agonists including sulforaphane have been demonstrated. The current study was designed to investigate the effect of sulforaphane on model acute lung injury and sulforaphane-mediated transcriptome changes in mouse lungs. Adult mice genetically deficient in Nrf2 (Nrf2-/-) and wild-type controls (Nrf2+/+, ICR) received oral sulforaphane (9 mmol/daily) or vehicle before (-5, -3, -1 days) hyperoxia or air exposure (3 days), and lung injury and gene expression changes were assessed. Sulforaphane significantly reduced hyperoxia-induced airway injury, inflammation, and mucus hypersecretion in Nrf2+/+ mice while relatively marginal treatment effect was found in Nrf2-/- mice. Sulforaphane significantly altered expression of lung genes associated with oxidative phosphorylation and mitochondrial dysfunction (Atp2a2, Cox7a1, Ndufa1) basally and cell function/cycle and protein metabolism (Actr1a, Wasf2, Ccne1, Gtpbp4) after hyperoxia in Nrf2+/+ mice. Nrf2-dependently modulated lung genes by sulforaphane and hyperoxia were associated with tissue development and hereditary disorders (Slc25a3, Pccb, Psmc3ip). Results demonstrate preventive roles of sulforaphane against oxidant lung injury in mice, and reveal potential downstream mechanisms. Our observations also suggest Nrf2-independent mechanisms of sulforaphane in prevention of acute lung injury.
No associated publication
Specimen part
View SamplesThe cell of origin of hepatoblastoma in humans and mice (HB) is unknown; it has been hypothesized to be a transformed hepatocyte, an oval cell, or a multipotent hepatic progenitor cell. In mice, the current dogma is that HBs arise within hepatocellular neoplasms as a result of further transformation from a neoplastic hepatocyte. However, there is little evidence in the literature to support a direct relationship between these two cell types. Furthermore, due to differences in etiology and development of hepatoblastoma between mice and humans, many have questioned the relevance of these tumors in hazard identification and risk assessment. In order to better understand the relationship between hepatocellular carcinoma and hepatoblastoma, as well as better determine the molecular similarities between mouse and human hepatoblastoma, global gene expression analysis and targeted Hras and Ctnnb1 mutation analysis were performed using concurrent hepatoblastoma, hepatocellular carcinoma, and associated normal adjacent liver (in the context of vehicle control liver) samples from a recent National Toxicology Program chronic bioassay. The data from this study provides a better understanding of the origins of hepatoblastoma in the B6C3F1 mice and the relevance of mouse hepatoblastoma to humans when considering chemical exposures of potential human cancer risk.
No associated publication
Specimen part
View SamplesThe objective is to identify genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by the Rag proteins in murine pre-B cells. Cells lacking Artemis are used since the Rag-induced DSBs will not be repaired and, thus, will provide a continuous stimulus to the cell. Cells lacking Artemis and Atm are used to determine which gene expression changes depend on Atm and cells lacking Artemis that express an I kappa B alpha dominant negative are used to determine which gene expression changes depend on NFkB.
DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes.
No sample metadata fields
View SamplesThe goal of the microarray analysis is to determine the redundant and distinct roles of Dhh and Ihh in ovarian functions
Reproductive, Physiological, and Molecular Outcomes in Female Mice Deficient in Dhh and Ihh.
Age, Specimen part
View Samples