This SuperSeries is composed of the SubSeries listed below.
Anchorage-independent cell growth signature identifies tumors with metastatic potential.
Specimen part, Cell line
View SamplesCultured cancer cells exhibit substantial phenotypic heterogeneity when measured in a variety of ways such as sensitivity to drugs or the capacity to grow under various conditions. Among these, the ability to exhibit anchorage-independent cell growth (colony forming capacity in semisolid media) has been considered to be fundamental in cancer biology because it has been connected with tumor cell aggressiveness in vivo such as tumorigenic and metastatic potentials, and also utilized as a marker for in vitro transformation. Although multiple genetic factors for anchorage-independence have been identified, the molecular basis for this capacity is still largely unknown. To investigate the molecular mechanisms underlying anchorage-independent cell growth, we have used genome-wide DNA microarray studies to develop an expression signature associated with this phenotype. Using this signature, we identify a program of activated mitochondrial biogenesis associated with the phenotype of anchorage-independent growth and importantly, we demonstrate that this phenotype predicts potential for metastasis in primary breast and lung tumors.
Anchorage-independent cell growth signature identifies tumors with metastatic potential.
No sample metadata fields
View SamplesIn this study, we have explored microarray-based differential gene expression profile in mouse lung tissue 8 h after inducing polymicrobial sepsis and the effect of preprotachykinin-A (PPTA) gene deletion. A range of genes differentially expressed (> 2-fold) in microarray analysis was assessed, PPTA-knockout septic mice with their respective sham controls.
Substance P in polymicrobial sepsis: molecular fingerprint of lung injury in preprotachykinin-A-/- mice.
Specimen part, Treatment
View SamplesWe examined the effects of high-fat diet on feeding behaviour, body weight regulation and common biomarkers associated with weight gain in the C57BL/6J mice over a period of 10 weeks, making measurements at weeks 2, 4 and 10. We examined the transcriptomic profile of hepatic genes involved in the major lipid metabolic pathways, validating the key genes with quantitative real-time reverse-transcription PCR (qRT-PCR) and their gene products with western blots.
Sequential responses to high-fat and high-calorie feeding in an obese mouse model.
No sample metadata fields
View SamplesTo guarantee blood supply throughout adult life hematopoietic stem cells (HSCs) need to carefully balance between self-renewing cell divisions and quiescence. Identification of genes controlling HSC self-renewal is of utmost importance given that HSCs are the only stem cells with broad clinical applications. Transcription factor PU.1 is one of the major regulators of myeloid and lymphoid development. Recent reports suggest that PU.1 mediates its functions via gradual expression level changes rather than binary on/off states. So far, this has not been considered in any study of HSCs and thus, PU.1s role in HSC function has remained largely unclear. Here we demonstrate using hypomorphic mice with an engineered disruption of an autoregulatory feedback loop that decreased PU.1 levels resulted in loss of key HSC functions, all of which could be fully rescued by restoration of proper PU.1 levels via a human PU.1 transgene. Mechanistically, we found excessive HSC cell divisions and altered expression of cell cycle regulators whose promoter regions were bound by PU.1 in normal HSCs. Adequate PU.1 levels were maintained by a mechanism of direct autoregulation restricted to HSCs through a physical interaction of a -14kb enhancer with the proximal promoter. Our findings identify PU.1 as novel regulator controling the switch between cell division and quiescence in order to prevent exhaustion of HSCs. Given that even moderate level changes greatly impact stem cell function, our data suggest important therapeutic implications for leukemic patients with reduced PU.1 levels. Moreover, we provide first proof, that autoregulation of a transcription factor, PU.1, has a crucial function in vivo. We anticipate that our concept of how autoregulation forms an active chromosomal conformation will impact future research on transcription factor networks regulating stem cell fate.
Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells.
Specimen part
View SamplesChronic rhinosinusitis with nasal polyps (CRSwNP) is a debilitating inflammatory disease of the sinonasal cavities. Concomitant CRSwNP and asthma, together with hypersensitivity reactions to cyclooxygenase-1 (COX-1) inhibitors, is a particular phenotype known as NSAID-exacerbated respiratory disease (N-ERD), which is associated with greater disease severity. In this study, we attempted to characterize clinical, laboratory, and transcriptomic differences between CRSwNP patients with N-ERD (N-ERD N=13) and CRSwNP patients without N-ERD (non-N-ERD, N=13). Overall design: Genome-wide RNA sequencing of polyps patients
No associated publication
Specimen part, Disease, Disease stage, Subject
View SamplesTo identify the imprinting loci, we designed microarray analysis on the parthenogenetic embryonic stem cells and normal embryos. We could predict 217 imprinting domains associated with embryo development and maternal imprinting.
No associated publication
No sample metadata fields
View SamplesInterleukin (IL)-27 is a key immunosuppressive cytokine that counters T helper 17 (Th17) cell-mediated pathology. To identify mechanisms by which IL-27 might exert its immunosuppressive effect, we analyzed genes in T cells rapidly induced by IL-27. We found that IL-27 priming of nave T cells upregulated expression of programmed death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)1-dependent manner. When co-cultured with nave CD4+ T cells, IL-27-primed T cells inhibited the differentiation of Th17 cells in trans through a PD-1-PD-L1 interaction. In vivo, co-administration of nave TCR transgenic T cells (2D2 T cells) with IL-27-primed T cells expressing PD-L1 inhibited the development of Th17 cells and protected from severe autoimmune encephalomyelitis. Thus, these data identify a suppressive activity of IL-27, by which CD4+ T cells can restrict differentiation of Th17 cells in trans.
No associated publication
Specimen part, Treatment
View SamplesSTAT3, an essential transcription factor with pleiotropic functions, plays critical roles in the pathogenesis of autoimmunity. Despite recent data linking STAT3 with inflammatory bowel disease, exactly how it contributes to chronic intestinal inflammation is not known. Using a T cell transfer model of colitis we found that STAT3 expression in T cells was essential for the induction of both colitis and systemic inflammation. STAT3 was critical in modulating the balance of T helper 17 (Th17) and regulatory T (Treg) cells, as well as in promoting CD4+ T cell proliferation. We used chromatin immunoprecipitation and massive parallel sequencing (ChIP-Seq) to define the genome-wide targets of STAT3 in CD4+ T cells. We found that STAT3 bound to multiple genes involved in Th17 cell differentiation, cell activation, proliferation and survival, regulating both expression and epigenetic modifications. Thus, STAT3 orchestrates multiple critical aspects of T cell function in inflammation and homeostasis.
Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis.
Specimen part
View SamplesSTAT3, an essential transcription factor with pleiotropic functions, plays critical roles in the pathogenesis of autoimmunity. Despite recent data linking STAT3 with inflammatory bowel disease, exactly how it contributes to chronic intestinal inflammation is not known. Using a T cell transfer model of colitis we found that STAT3 expression in T cells was essential for the induction of both colitis and systemic inflammation. STAT3 was critical in modulating the balance of T helper 17 (Th17) and regulatory T (Treg) cells, as well as in promoting CD4+ T cell proliferation. We used chromatin immunoprecipitation and massive parallel sequencing (ChIP-Seq) to define the genome-wide targets of STAT3 in CD4+ T cells. We found that STAT3 bound to multiple genes involved in Th17 cell differentiation, cell activation, proliferation and survival, regulating both expression and epigenetic modifications. Thus, STAT3 orchestrates multiple critical aspects of T cell function in inflammation and homeostasis.
Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis.
No sample metadata fields
View Samples