This SuperSeries is composed of the SubSeries listed below.
An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.
Specimen part, Treatment
View SamplesTo explore oncogene addiction programs in a genetically defined leukemia context we developed an AML mouse model driven by a conditional MLL-AF9 allele together with oncogenic Ras, which enabled us to examine the consequences of MLL-AF9 inhibition in established disease. In order to produce a tightly regulated system that was easy to monitor, we constructed two retroviral vectors containing dsRed-linked MLL-AF9 under control of a tetracycline response element promoter, and KrasG12D or NrasG12D linked to the Tet-off tet-transactivator, which activates TRE expression in a doxycycline repressible manner. Leukemias were generated by retroviral cotransduction of both vectors into hematopoietic stem and progenitor cells, which were transplanted into syngeneic mice. Cells harboring both constructs induced aggressive myelomonocytic leukemia. Five independent primary leukemia cell lines were established from bone marrow of terminal mice. Treatment of these lines with doxycycline rapidly turned off MLL-AF9 expression, and induced terminal myeloid differentiation and complete disease remission in vivo.
An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.
Specimen part, Treatment
View SamplesUsing an integrative approach combining a Tet-off conditional AML mouse model, global expression profiling following suppression of the driving MLL-AF9 oncogene, and a new Tet-on conditional shRNA expression system we have identified Myb as critical mediator of addiction to MLL-AF9. Suppression of Myb in established AML in vivo terminates aberrant self-renewal and triggers a terminal myeloid differentiation program that precisely phenocopies the effects of suppressing MLL-AF9. Remarkably, suppressing Myb effectively eradicates aggressive and chemotherapy resistant AML.
An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.
Specimen part
View SamplesPolycomb complexes establish chromatin modifications for maintaining gene repression and are essential for embryonic development in mice. Here we use pluripotent embryonic stem (ES) cells to demonstrate an unexpected redundancy between Polycomb repressive complex 1 (PRC1) and PRC2 during the formation of differentiated cells. ES cells lacking the function of either PRC1 or PRC2 can differentiate into cells of the three germ layers, whereas simultaneous loss of PRC1 and PRC2 abrogates differentiation. On the molecular level the differentiation defect is caused by the derepression of a set of genes that is redundantly repressed by PRC1 and PRC2 in ES cells. Furthermore, we find that genomic repeats are Polycomb targets and show that in the absence of Polycomb complexes endogenous MLV elements can mobilize. This indicates a contribution of the PcG system to the defense against parasitic DNA and a potential role of genomic repeats in Polycomb mediated gene regulation.
No associated publication
Cell line
View SamplesIn order to study the consequences of the loss of Icsbp expression in hematopoiesis Granulocyte-Monocyte Progenitors from bone marrow were isolated from Icsbp wild type and deficient mice by flow cytometry. Global gene expression was performed using Affymetrix gene chip technology.
No associated publication
No sample metadata fields
View SamplesAffymetrix Mouse Genome 430 2.0 arrays were used to measure genome-wide gene expression levels. The results show that high-risk human papillomavirus oncogenes E6 and E7 reprogram the cervical cancer microenvironment independently of and synergistically with estrogen, a critical co-factor in cervical cancer development and maintenance.
Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen.
Specimen part, Treatment
View SamplesAims: We investigate sex differences and the role of oestrogen receptor beta (ERbeta) in a mouse model of pressure overload-induced myocardial hypertrophy. Methods and results: We performed transverse aortic constriction (TAC) or sham surgery in male and female wild-type (WT) and ERbeta knockout (ERbeta-/-) C57Bl6 mice. All mice were characterised by echocardiography and haemodynamic measurements and were sacrificed nine weeks after surgery. Left ventricular (LV) samples were analysed by microarray profiling, real-time RT-PCR and histology. After nine weeks, WT males showed more hypertrophy and heart failure signs than WT females. Notably, WT females developed a concentric form of hypertrophy, while males developed eccentric hypertrophy. These sex differences were abolished in ERbeta-/- mice. ERbeta deletion augmented the TAC-induced increase in cardiomyocyte diameter in both sexes. Gene expression profiling revealed that male WT hearts had a stronger induction of matrix-related genes and a stronger repression of mitochondrial genes than female hearts. ERbeta-/- mice exhibited a different transcriptome. Induction of pro-apoptotic genes after TAC occurred in ERbeta-/- mice of both sexes with a stronger expression in ERbeta-/- males. Histological analysis revealed, that cardiac fibrosis was more pronounced in male WT TAC than in female mice. This was abolished in ERbeta-/- mice. Apoptosis was significantly induced in both sexes of ERbeta-/- TAC mice, but it was most prominent in males. Conclusion: Female sex offers protection against ventricular chamber dilation in the TAC model. Both the female sex and ERbeta attenuate the development of fibrosis and apoptosis; thus slowing the progression to heart failure.
Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload.
Sex, Age, Specimen part
View SamplesMechanisms controlling the proliferative activity of neural stem/progenitor cells (NSPCs) play a pivotal role to ensure life-long neurogenesis in the mammalian brain. How metabolic programs are coupled with NSPC activity remains unknown. Here we show that fatty acid synthase (FASN), the key enzyme of de novo lipogenesis, is highly active in adult NSPCs and that conditional deletion of FASN in NSPCs impairs adult neurogenesis. The rate of de novo lipid synthesis and subsequent proliferation of NSPCs is regulated by Spot14, a gene we found to be selectively expressed in low proliferating adult NSPCs. Spot14 reduces the availability of malonyl-CoA, which is an essential substrate for FASN to fuel lipogenesis. Thus, we here identified a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation.
No associated publication
Specimen part
View SamplesThe analysis of several mammalian genomes has revealed between 20,000 to 30,000 genes in each genome, a number that may seem hard to reconcile with the large number of cell types and complex functions of these organisms. The solution to this paradox partly lies in the large array of transcripts that each gene can potentially generate through usage of alternative promoters and the variable levels of transcripts that each gene produces in different tissues and cell types. Thus, in order to understand the mechanisms that control diverse patterns of gene expression in mammals, it is necessary to accurately define the active promoters and monitor their cell or tissue-dependent activity. Previous high throughput strategies for assaying tissue-specific gene expression have primarily relied on measurements of steady-state transcript levels by microarrays or tag sequencing. Here, we employ a new experimental strategy to identify and characterize tissue specific promoters by integrating genome-wide maps of RNA polymerase II (Pol II) binding, chromatin modifications and gene expression profiles. We applied this strategy to mouse embryonic stem cells (mES), and adult brain, heart, kidney, and liver. Our results delineated 24,363 Pol II binding sites throughout the genome, 91% of which correspond to 5 end annotation based on known transcripts and cap-analysis of gene expression (CAGE) and can be regarded as promoters. A majority of these experimentally defined promoters are active in all tissues, while only 4,396 can be characterized as tissue-specific using a quantitative measure of Pol II occupancy. In general, Pol II occupancy at these tissue specific promoters is correlated with the presence of active histone modification marks. However, a set of mES- specific promoters display persistent levels of H3K4me3 in non-ES tissues despite undetectable Pol II binding and transcript. Broadly, our results expand the knowledge of tissue-specific mammalian genes and provide a resource for understanding the transcriptional programs in mammalian development and differentiation.
No associated publication
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions.
Sex, Age, Specimen part, Treatment, Subject
View Samples