Most tumors are epithelial-derived, and although disruption of polarity and aberrant cellular junction formation is a poor prognosticator in human cancer, the role of polarity determinants in oncogenesis is poorly understood. Using in vivo selection, we identified a mammalian orthologue of the Drosophila polarity regulator crumbs as a gene whose loss of expression promotes tumor progression. Immortal baby mouse kidney epithelial (iBMK) cells selected in vivo to acquire tumorigenicity displayed dramatic repression of crumbs3 (crb3) expression associated with disruption of tight junction formation, apicobasal polarity, and contact-inhibited growth. Restoration of crb3 expression restored junctions, polarity and contact inhibition, while suppressing migration and metastasis. These findings suggest a role for mammalian polarity determinants in suppressing tumorigenesis that may be analogous to the well-studied polarity tumor suppressor mechanisms in Drosophila.
Role of the polarity determinant crumbs in suppressing mammalian epithelial tumor progression.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding.
Specimen part
View SamplesCell differentiation requires epigenetic modulation of tissue-specific genes and activities of master transcriptional regulators, which are recognized for their dominant control over cellular programs. Using novel epigenomic methods, we characterized enhancer elements specifically modified in differentiating intestinal epithelial cells and found enrichment of transcription factor-binding motifs corresponding to CDX2, a master regulator of the intestine. Directed investigation revealed surprising lability in CDX2 occupancy of the genome, with redistribution from hundreds of sites occupied only in progenitors to thousands of new sites in mature cells. Knockout mice confirmed distinct Cdx2 requirements in dividing and differentiated adult intestinal cells, including responsibility for the active enhancer configuration associated with maturity. Dynamic CDX2 occupancy corresponds with condition-specific gene expression and, importantly, to differential co-occupancy with other tissue-restricted transcription factors: HNF4A in mature cells and GATA6 in progenitors. These results reveal dynamic, context-specific functions and mechanisms of a master transcription factor within a cell lineage.
Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2.
Specimen part, Cell line
View SamplesWe conditionally inactivated mouse Cdx2, a dominant regulator of intestinal development, and mapped its genome occupancy in adult intestinal villi. Although homeotic transformation, observed in Cdx2-null embryos, was absent in mutant adults, gene expression and cell morphology were vitally compromised. Lethality was accelerated in mice lacking both Cdx2 and its homolog Cdx1, with exaggeration of defects in crypt cell replication and enterocyte differentiation. Cdx2 occupancy correlated with hundreds of transcripts that fell but not with equal numbers that rose with Cdx loss, indicating a predominantly activating role at intestinal cis-regulatory regions. Integrated consideration of a mutant phenotype and cistrome hence reveals the continued and distinct requirement in adults of a master developmental regulator that activates tissue-specific genes.
No associated publication
Specimen part
View SamplesWe established whether partner transcription factor binding, chromatin structure, or gene expression is compromised upon loss of partner factors cdx2 or hnf4a in mouse intestinal villi
No associated publication
Specimen part
View SamplesRNA from wt and SIN1 knock-out MEF cell lines were compared
mTORC2 Responds to Glutamine Catabolite Levels to Modulate the Hexosamine Biosynthesis Enzyme GFAT1.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.
Specimen part, Compound
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrating factor analysis and a transgenic mouse model to reveal a peripheral blood predictor of breast tumors.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer.
Sex, Age, Disease stage, Race
View SamplesThe well-defined battery of in vitro systems applied within chemical cancer risk assessment is often characterised by a high false-positive rate, thus repeatedly failing to correctly predict the in vivo genotoxic and carcinogenic properties of test compounds. Toxicogenomics, i.e. mRNA-profiling, has been proven successful in improving the prediction of genotoxicity in vivo and the understanding of underlying mechanisms. Recently, microRNAs have been discovered as post-transcriptional regulators of mRNAs. It is thus hypothesised that using microRNA response-patterns may further improve current prediction methods. This study aimed at predicting genotoxicity and non-genotoxic carcinogenicity in vivo, by comparing microRNA- and mRNA-based profiles, using a frequently applied in vitro liver model and exposing this to a range of well-chosen prototypical carcinogens. Primary mouse hepatocytes (PMH) were treated for 24 and 48h with 21 chemical compounds [genotoxins (GTX) vs. non-genotoxins (NGTX) and non-genotoxic carcinogens (NGTX-C) versus non-carcinogens (NC)]. MicroRNA and mRNA expression changes were analysed by means of Exiqon and Affymetrix microarray-platforms, respectively. Classification was performed by using Prediction Analysis for Microarrays (PAM). Compounds were randomly assigned to training and validation sets (repeated 10 times). Before prediction analysis, pre-selection of microRNAs and mRNAs was performed by using a leave-one-out t-test. No microRNAs could be identified that accurately predicted genotoxicity or non-genotoxic carcinogenicity in vivo. However, mRNAs could be detected which appeared reliable in predicting genotoxicity in vivo after 24h (7 genes) and 48h (2 genes) of exposure (accuracy: 90% and 93%, sensitivity: 65% and 75%, specificity: 100% and 100%). Tributylinoxide and para-Cresidine were misclassified. Also, mRNAs were identified capable of classifying NGTX-C after 24h (5 genes) as well as after 48h (3 genes) of treatment (accuracy: 78% and 88%, sensitivity: 83% and 83%, specificity: 75% and 93%). Wy-14,643, phenobarbital and ampicillin trihydrate were misclassified. We conclude that genotoxicity and non-genotoxic carcinogenicity probably cannot be accurately predicted based on microRNA profiles. Overall, transcript-based prediction analyses appeared to clearly outperform microRNA-based analyses.
Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.
Specimen part, Compound
View Samples