Analyzing the kenetics of alveolar macrophage turnover after human lung transplantation and identifying protein and transcriptional differences between donor and recipient-derived alveolar macrophages Overall design: Bulk RNA sequencing performed from FACS sorted donor and recipient-derived alveolar macrophages derived from the bronchoalveolar lavage of lung transplant recipients, defined as CD45+, Live, lineage negative, CD64+CD206+ cells.
Rate of recipient-derived alveolar macrophage development and major histocompatibility complex cross-decoration after lung transplantation in humans.
Specimen part, Subject
View SamplesHepatoblastoma (HB) is the most common pediatric liver tumor, and there are no targeted therapies available for children with HB. We have previously developed a murine model of HB which is driven by coactivation of the oncogenes YAP1 and -catenin (CTNNB1) [Tao J, Calvisi D, Ranganathan S, et al. Gastroenterology, 2014 Sep; 147(3): 690701]. We used the Sleeping Beauty transposase system combined with hydrodynamic tail vein injection to deliver plasmids containing mutant activated forms of YAP1 (YAP S127A) and -catenin (N90 -catenin) to a small number of pericentral hepatocytes. We have shown that these few transformed hepatocytes proliferate and dedifferentiate, eventually forming histologically heterogeneous tumors that resemble various subtypes of human HB (which is also highly heterogeneous), including areas of well-differentiated fetal, crowded fetal, embryonal, and blastemal HB. Our goal was to investigate how coactivation of YAP1 and -catenin drive the dedifferentiation of hepatocytes into hepatoblast-like tumor cells over time, leading to HB tumors. In order to measure changes in gene expression during tumorigenesis in our model, we used an Affymetrix microarray to analyze isolated RNA from wild type FVB mouse livers, mouse HB tumor tissue, and non-tumor liver tissue adjacent to HB tumors.
Hepatocyte-Derived Lipocalin 2 Is a Potential Serum Biomarker Reflecting Tumor Burden in Hepatoblastoma.
Age, Specimen part
View SamplesOcular immune privilege (IP) limits immune surveillance of intraocular tumors as certain immunogenic tumor cell lines (P815, E.G7-OVA) that are rejected when transplanted in the skin grow progressively when placed in the anterior chamber (a.c.) of the eye. As splenectomy (SPLNX) is known to terminate ocular IP, we characterized immune mechanisms responsible for spontaneous rejection of intraocular tumors in SPLNX mice as a first step toward identifying how to restore tumoricidal activity within the eye. Microarray data showed a 3-fold increase in interferon (IFN)- and a 2.7-fold increase in Fas ligand (FasL). There was a robust increase in transcripts (127 of 408 surveyed) from interferon (IFN)-stimulated genes and a marked decrease (in 40 of 192 surveyed) in the expression of cell-cycle-associated genes. Non-microarray data confirmed that IFN, FasL and CD8+ T cells but not perforin or TNF were required for elimination of intraocular E.G7-OVA tumors that culminated in destruction of the eye (ocular phthsis). IFN and FasL did not target tumor cells directly as the majority of SPLNX IFNR1-/- mice and Fas-defective lpr mice failed to eliminate ocular E.G7-OVA tumors that expressed Fas and IFNR1. Bone marrow chimeras showed that immune cell expression of IFNR1 and Fas was critical and that SPLNX increased the frequency of activated macrophages within ocular tumors in an IFN- and Fas/FasL-dependent manner. Rejection of intraocular tumors was associated with increased ocular mRNA expression of several inflammatory genes including FasL, NOS2, CXCL2 and T-bet. Our data support a model in which IFN- and Fas/FasL-dependent activation of intratumoral macrophage by CD8+ T cells promotes severe intraocular inflammation that indirectly eliminates intraocular tumors by inducing phthisis. The immunosuppressive mechanisms which maintain ocular IP likely interfere with the interaction between CD8+ T cells and macrophage to limit immunosurveillance of intraocular tumors.
Splenectomy promotes indirect elimination of intraocular tumors by CD8+ T cells that is associated with IFNγ- and Fas/FasL-dependent activation of intratumoral macrophages.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual-platform microarray analysis.
Sex, Specimen part
View SamplesA dual platform microarray analysis was used to characterize the temporal transcriptomic response in the mouse liver following trauma and hemmorhagic shock
Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual-platform microarray analysis.
Sex, Specimen part
View SamplesSV40 large T antigen (TAg) contributes to cell transformation, in part, by targeting two well characterized tumor suppressors, pRb and p53. TAg expression affects the transcriptional circuits controlled by Rb and by p53. We have performed a microarray analysis to examine the global change in gene expression induced by wild-type TAg and TAg-mutants, in an effort to link changes in gene expression to specific transforming functions. For this analysis we have used enterocytes from the mouse small intestine expressing TAg. Expression of TAg in the mouse intestine results in hyperplasia and dysplasia. Our analysis indicates that practically all gene expression regulated by TAg in enterocytes is dependent upon its binding and inactivation of the Rb-family proteins.
Simian virus 40 T-antigen-mediated gene regulation in enterocytes is controlled primarily by the Rb-E2F pathway.
Sex, Age, Specimen part
View SamplesThe lung host immune responses following M.tuberculosis infection in the mouse model of tuberculosis were assayed by studying the gene expression profiles at day 0, day 12, 15 and 21 post infection
Profiling early lung immune responses in the mouse model of tuberculosis.
Specimen part, Time
View SamplesPurpose: To identify the changes in postnatal mouse conjunctival forniceal gene expression and their regulation by Klf4 around eye opening stage when the goblet cells first appear.
Mouse conjunctival forniceal gene expression during postnatal development and its regulation by Kruppel-like factor 4.
No sample metadata fields
View SamplesTCPOBOP (1,4-Bis [2-(3,5-Dichloropyridyloxy)] benzene) is a constitutive androstane receptor (CAR) agonist that induces robust hepatocyte proliferation and hepatomegaly without any liver injury or tissue loss. TCPOBOP-induced direct hyperplasia has been considered to be CAR-dependent with no evidence of involvement of cytokines or growth factor signaling. Receptor tyrosine kinases (RTKs), MET and EGFR, are known to play a critical role in liver regeneration after partial hepatectomy, but their role in TCPOBOP-induced direct hyperplasia, not yet explored, is investigated in the current study. Disruption of the RTK-mediated signaling was achieved utilizing MET KO mice along with Canertinib treatment for EGFR inhibition. Combined elimination of MET and EGFR signaling [MET KO + EGFRi], but not individual disruption, dramatically reduced TCPOBOP-induced hepatomegaly and hepatocyte proliferation. TCPOBOP-driven CAR activation was not altered in [MET KO + EGFRi] mice, as measured by nuclear CAR translocation and analysis of typical CAR target genes. However, TCPOBOP induced cell cycle activation was impaired in [MET KO + EGFRi] mice due to defective induction of cyclins, which regulate cell cycle initiation and progression. TCPOBOP-driven induction of FOXM1, a key transcriptional regulator of cell cycle progression during TCPOBOP-mediated hepatocyte proliferation, was greatly attenuated in [MET KO + EGFRi] mice. Interestingly, TCPOBOP treatment caused transient decline in HNF4 expression concomitant to proliferative response; this was not seen in [MET KO + EGFRi] mice. Transcriptomic profiling revealed vast majority (~40%) of TCPOBOP-dependent genes mainly related to proliferative response, but not to drug metabolism, were differentially expressed in [MET KO + EGFRi] mice. Conclusion: Taken together, combined disruption of EGFR and MET signaling lead to dramatic impairment of TCPOBOP-induced proliferative response without altering CAR activation.
TCPOBOP-induced hepatomegaly & hepatocyte proliferation is attenuated by combined disruption of MET & EGFR signaling.
No sample metadata fields
View SamplesWe have generated transgenic mice expressing constitutively activated aryl hydrocarbon receptor (CA-AhR) to examine the biological consequences of AhR activation..
A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis.
Specimen part
View Samples