It has been reported that repeated intra-tracheal instillation of S. chartarum spores induced significant pulmonary arterial remodeling in mice, which resulted in pathological changes like human pulmonary arterial hypertension (PAH) and elevation right ventricle systolic pressure.
Gene expression analysis of a murine model with pulmonary vascular remodeling compared to end-stage IPAH lungs.
Sex, Specimen part, Disease, Disease stage
View SamplesGerm free (GF) and conventionalized (CONV-D) wild-type C57Bl/6 male mice in the CARB-fed, 24h fasted, and 30d trained states; plus GF and CONV-D CARB-fed Ppara-/- mice. CARB-fed indicates a standard polysaccharide-rich mouse chow diet.
No associated publication
Sex, Specimen part
View SamplesSusceptible and Resistant mouse strain, e.g. DBA/2J and C57BL/6J respectively, were inoculated with a highly pathogenic H5N1 influenza A virus (A/Hong Kong/213/2003) for 72 hours.
Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis.
Specimen part, Treatment
View SamplesDisruption of protein folding in the endoplasmic reticulum triggers the Unfolded Protein Response (UPR), a transcriptional and translational control network designed to restore protein homeostasis. Central to the UPR is PERK phosphorylation of the alpha subunit of eIF2 (eIF2~P), which represses global translation coincident with preferential translation of mRNAs, such as ATF4 and CHOP, that serve to implement the UPR transcriptional regulation. In this study, we used sucrose gradient ultracentrifugation and a genome-wide microarray approach to measure changes in mRNA translation during ER stress. Our analysis suggests that translational efficiencies vary across a broad range during ER stress, with the majority of transcripts being either repressed or resistant to eIF2~P, while a notable cohort of key regulators are subject to preferential translation. From this latter group, we identify IBTKa as being subject to both translation and transcriptional induction during eIF2~P in both cell lines and a mouse model of ER stress. Translational regulation of IBTKalpha mRNA involves the stress-induced relief of two inhibitory uORFs in the 5'-leader of the transcript. Depletion of IBTKalpha by shRNA reduced viability of cultured cells coincident with increased caspase 3/7 cleavage, suggesting that IBTKalpha is a key regulator in determining cell fate during the UPR.
Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKα.
Specimen part
View SamplesAnalysis of gene expression in lungs of C57BL/6J mice that develop chronic airway disease phenotypes after a single Sendai virus infection, compared with mice treated with UV-inactivated virus.
Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.
Sex, Time
View SamplesHD R6/1 transgenic mouse line brain hemispheres dissected. RNA targets were created for transgenics and wildtypes at time points 18, 22 and 27 weeks. Profiles and data analysis performed using the Bioconductor software and linear model contrasts using LIMMA on RMA probeset summarys.
No associated publication
No sample metadata fields
View SamplesEnvironmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the Integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switch to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study was to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP induces the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly activated by both CHOP and ATF4. Knock-down of ATF5 increased cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have pro-apoptotic functions. Transcriptome analyses of ATF5-dependent genes revealed targets involved in apoptosis, including, NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feed-forward loop of stress induced transcriptional regulators, each subject to transcriptional and translational control that can switch cell fate towards apoptosis.
CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis.
Specimen part, Treatment
View SamplesRegulatory T (Treg) cells play an important role in the induction and maintenance of peripheral tolerance. Treg cells also suppress a variety of other immune responses, including anti-tumor and alloimmune responses. We have previously reported that tumor-activated Treg cells express granzyme B and that granzyme B is important for Treg cell-mediated suppression of anti-tumor immune responses (GSE13409). Here, we report that allogeneic mismatch also induces the expression of granzyme B. Granzyme B-deficient mice challenged with fully mismatched allogeneic P815 mastocytoma cells have markedly improved survival compared to WT and other granzyme- or perforin-deficient mice, suggesting an immunoregulatory role for granzyme B in this setting. Treg cells harvested from the tumor environment of P815-challenged mice express granzyme B. Treg cells also express granzyme B in vitro during mixed lymphocyte reactions and in vivo in a mouse model of graft-versus-host disease (GVHD). However, in contrast to findings from our previously published tumor model, granzyme B is not required for the suppression of effector T cell (Teff) proliferation in in vitro Treg suppression assays stimulated by either Concanavalin A or allogeneic antigen presenting cells. Additionally, in an ex vivo assay, sort-purified in vivo-activated CD4+Foxp3+ Treg cells from mice with active GVHD -- under conditions known to induce granzyme B expression in Treg cells -- suppressed Teff cell proliferation in a granzyme B-independent manner. Adoptive transfer of naive granzyme B-deficient CD4+CD25+ Treg cells into a mouse model of GVHD rescued hosts from lethatlity equivalently to naive wild-type Treg cells. Serum analysis of GVHD-associated cytokine production in these recipients also demonstrated that Treg cells suppressed production of IL-2, IL-4, IL-5, GM-CSF, and IFN-gamma in a granzyme B-independent manner. In order to determine whether the context in which Treg cells are activated alters the intrinsic properties of Treg cells, we used Foxp3 reporter mice to obtain gene expression profiles of CD4+Foxp3+ Treg cells purifed from naive resting spleens, spleens from mice with acute GVHD, and from ascites fluid of mice challenged intraperitoneally with allogeneic P815 tumor cells. Unsupervised analyses revealed distinct activation signatures of Treg cells among the 3 experimental groups. Taken together, these findings demonstrate that granzyme B is not required for Treg cell-mediated suppression of GVHD, which is in contrast to what we have previously reported for Treg cell function in the setting of tumor challenge. Cell intrinsic differences could partially account for these differential phenotypes. These data also suggest the therapeutic potential of targeting specific Treg cell suppressive functions in order to segregate GVHD and graft-versus-tumor effector functions.
No associated publication
Specimen part
View SamplesDisruptions of the endoplasmic reticulum (ER) that perturb protein folding cause ER stress and elicit an unfolded protein response (UPR) that involves translational and transcriptional changes in gene expression aimed at expanding the ER processing capacity and alleviating cellular injury. Three ER stress sensors PERK, ATF6, and IRE1 implement the UPR. PERK phosphorylation of eIF2 during ER stress represses protein synthesis, which prevents further influx of ER client proteins, along with preferential translation of ATF4, a transcription activator of the integrated stress response. In this study we show that the PERK/eIF2~P/ATF4 pathway is required not only for translational control, but also activation of ATF6 and its target genes. The PERK pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the ER to the Golgi for intramembrane proteolysis and activation of ATF6. As a consequence, liver-specific depletion of PERK significantly reduces both the translational and transcriptional phases of the UPR, leading to reduced protein chaperone expression, disruptions of lipid metabolism, and enhanced apoptosis. These findings show that the regulatory networks of the UPR are fully integrated, and helps explain the diverse pathologies associated with loss of PERK.
The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress.
Specimen part, Treatment
View Samples