Murine 3T3-L1 progenitor adipocytes cell cultures, treated and untreated (Control) with resveratrol before the induction of differentiation and the effects on adipogenesis and insulin signaling was investigated.
No associated publication
No sample metadata fields
View SamplesTo further identify and understand the molecular and immunological correlates of pathology for SARS-CoV infection, we infected 129/S6/SvEv or B129 mice with the TOR2 strain of SARS-CoV. SARS-CoV was detected in the lung and nasal turbinates of infected mice peaking at 1 day post infection (DPI) in both tissues before decreasing rapidly to levels below detection at 7 DPI and 3 DPI, respectively. Pulmonary lesions in virus-infected animals included bronchiolar, peribronchiolar, and perivascular foci of mild to moderate subacute inflammation. Chronic inflammation included inflammatory macrophages, lymphocytes, and plasma cells. Neutralizing antibodies appeared on 5 DPI (IgM); converting to IgG on 7 DPI. Despite the prevailing notion that SARS-CoV interferes with the induction of interferon (IFN) signaling, mice infected with SARS-CoV in vivo demonstrated significantly increased expression of innate antiviral interferon (IFN) response genes (IRGs) in the lungs during the first week of acute infection. By the end of the second week of infection, coordinated expression of MHC class I / II and antigen presentation genes occurred in correlation with declining viral titres. Collectively, the mouse data suggests that robust IFN-driven innate immune responses and a critical shift from innate to adaptive immune responses is necessary for clearance and recovery from SARS-CoV infection.
No associated publication
Sex, Specimen part, Time
View SamplesHuntington's disease (HD) features a unique disease-initiating mechanism hypothesized to entail an impact of the CAG repeat encoded polyglutamine region on the full-length huntingtin protein, with dominant effects that are continuous with CAG size, in a simple gain of function. To evaluate these predictions, we generated a series of heterozygous Hdh CAG knock-in mouse embryonic stem (ES) cell lines, with 18, 48, 89, 109 CAGs, and found that a continuous analytic strategy efficiently identified, from genome-wide datasets, 73 genes and 172 pathways whose expression varied continuously with CAG length. The CAG-correlated genes were distinct from the set of 754 genes that distinguished huntingtin null ES cells from wild-type controls, and CAG-correlated pathways did not display a one-to-one correspondence with the 238 pathways altered in huntingtin null ES cells. Rather, the genes that varied with CAG size were either members of the same pathways as altered genes in huntingtin null cells or were members of unique pathways related to these pathways. These findings falsified a gain of function/loss of function proposal but were consistent with the simple gain of novel function mechanism hypothesis. The dominant CAG correlated gene expression changes conformed to the genetic features of the HD initiating mechanism and were system-wide and inter-related with pathways perturbed by lack of full-length huntingtin function, urging system-wide approaches for the discovery and validation of potential modulating factors, in the search for effective HD therapeutics.
HD CAG-correlated gene expression changes support a simple dominant gain of function.
Cell line
View SamplesHuntingtons disease (HD) involves marked early neurodegeneration in the striatum whereas the cerebellum is relatively spared despite the ubiquitous expression of full-length mutant huntingtin, implying that inherent tissue-specific differences determine susceptibility to the HD CAG mutation. To understand this tissue specificity, we compared early mutant huntingtin-induced gene expression changes in striatum to those in cerebellum in young Hdh CAG knock-in mice, prior to onset of evident pathological alterations. Endogenous levels of full-length mutant huntingtin caused qualitatively similar, but quantitatively different gene expression changes in the two brain regions. Importantly, the quantitatively different responses in striatum and cerebellum in mutant mice were well accounted for by the intrinsic molecular differences in gene expression between striatum and cerebellum in wild-type animals. Tissue-specific gene expression changes in response to the HD mutation, therefore, appear to reflect the different inherent capacities of these tissues to buffer qualitatively similar effects of mutant huntingtin. These findings highlight a role for intrinsic quantitative tissue differences in contributing to HD pathogenesis, and likely to other neurodegenerative disorders exhibiting tissue-specificity, thereby guiding the search for effective therapeutic interventions.
Differential effects of the Huntington's disease CAG mutation in striatum and cerebellum are quantitative not qualitative.
Specimen part
View SamplesMost cell culture experiments utilize media containing fetal calf serum. Results are often interpreted regarding importance to human pathways. We studied gene expression in mouse macrophages grown in the absence of serum, and in fetal calf serum, mouse serum, and human serum using genome wide expression systems in resting conditions and after stimulation with lipopolysaccharide.
No associated publication
Specimen part, Treatment
View SamplesWe propose a method to compare the location and variability of gene ex-pression between two groups of microarrays using a permutation test based on the pairwise distance between microarrays. The microarrays could be samples from distinct clinical or biological populations or microarrays prepared at two different levels of an experimental factor. For these tests the entire microarray or some pre-specifed subset of genes, not the individual gene, is the unit of analysis. We apply this method to compare results from two dfferent protocols for preparing labeled targets for microarray hybridization and their subsequent gene expression analysis.
Assessing statistical significance in microarray experiments using the distance between microarrays.
No sample metadata fields
View SamplesMEG3 (Maternally Expressed Gene 3) is a non-coding RNA that is highly expressed in the normal human brain and pituitary. Expression of MEG3 is lost in gonadotroph-derived clinically non-functioning pituitary adenomas. Meg3 knock-out mice were generated to identify targets and potential functions of this gene in embryonic development and tumorigenesis. Gene expression profiles were compared in the brains of Meg3-null embryos and wild-type litter-mate controls using microarray analysis. Microarray data were analyzed with GeneSifter which uses Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) classifications to identify signaling cascades and functional categories of interest within the data set. Differences were found in signaling pathways and ontologies related to angiogenesis between wild-type and knock-out embryos. Quantitative RT-PCR and histological staining showed increased expression of some VEGF pathway genes and increased cortical microvessel density in the knock-out embryos. These results are consistent with reported increases in VEGF signaling observed in human clinically non-functioning pituitary adenomas. In conclusion, Meg3 may play an important role in control of vascularization in the brain and may function as a tumor suppressor by preventing angiogenesis.
Increased expression of angiogenic genes in the brains of mouse meg3-null embryos.
Specimen part
View SamplesMamamlian cardiogenesis occurs through the development of discreate populations of first and second heart field progenitors. We have used a dual transgenic color reproter system to isolate purified populations of these progenitors.
Generation of functional ventricular heart muscle from mouse ventricular progenitor cells.
No sample metadata fields
View SamplesIn Huntingtons disease (HD), an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors.
A novel approach to investigate tissue-specific trinucleotide repeat instability.
Specimen part
View SamplesGene expression in wild-type and p38a-knockout dendritic cells (DCs) were compared. Lymph node dendritic cells were isolated from mice, and left unstimulated and stimulated with Pam3CSK4, a toll-like receptor 2 agonist.
Cell type-specific targeting dissociates the therapeutic from the adverse effects of protein kinase inhibition in allergic skin disease.
No sample metadata fields
View Samples