Neuroblastoma is an embryonal tumor arising from the neural crest. It can be mimicked in mice by neural crest-specific overepxression of oncogenes such as MYCN or mutated ALK.
No associated publication
Specimen part
View SamplesAmplification of MYCN is the most prominent genetic marker of high-stage neuroblastoma, a childhood tumor originating from the neural crest. We generated a cell line (mNB-A1) from tumors developed in transgenic mouse and treated these cells with DMSO (n=6), the BRD4-inhibitor JQ1 (n=3) or the AURKA-inhibitor MLN8237 (n=3) for 24 h.
A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies.
Specimen part, Cell line, Treatment
View SamplesJoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.
MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gfi1b: a key player in the genesis and maintenance of acute myeloid leukemia and myelodysplastic syndrome.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Growth factor independence 1b (gfi1b) is important for the maturation of erythroid cells and the regulation of embryonic globin expression.
Specimen part
View SamplesDifferentiation of hematopoietic stem cells (HSCs) is regulated by a concert of different transcription factors (TFs). A disturbed function of TFs can be the basis of (pre)malignancies such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Growth Factor Independence 1b (Gfi1b) is a repressing TF with a key role in quiescence of HSCs and emergence and maturation of erythrocytes and platelets. Here, we show that low expression of GFI1B in blast cells is associated with inferior prognosis of MDS and AML patients. Using mouse models with either reduced expression or conditional deletion of Gfi1b, crossed with a mouse model reflecting human MDS or AML, we demonstrate that AML development was accelerated with heterozygous loss of Gfi1b, and latency was further decreased when Gfi1b was conditionally deleted. Loss of Gfi1b significantly enhanced stemness of leukemic cells with upregulation of genes fundamentally involved in leukemia development. On a molecular level, we found that loss of Gfi1b not only increased the levels of reactive oxygen species (ROS) but also induced gene expression changes of key AML pathways such as the p38/AKT pathway. These results demonstrate that Gfi1b functions as an oncosuppressor in MDS/AML development.
Gfi1b: a key player in the genesis and maintenance of acute myeloid leukemia and myelodysplastic syndrome.
Specimen part
View SamplesGrowth factor independence 1b (Gfi1b) is a DNA binding repressor of transcription with vital functions in hematopoiesis. Gfi1b-null embryos die at midgestation very likely due to defects in erythro- and megakaryopoiesis. To analyze the full functionality of Gfi1b in erythropoiesis, we used conditionally deficient mice that harbor floxed Gfi1b alleles and the Mx-Cre transgene inducible by pIpC treatment.
No associated publication
Specimen part
View SamplesIn order to study the gene expression profile in C57Bl/10 mouse blood, we exposed three different groups of animals. First was exposed to PO2 21% or normoxia. The second was exposed to chronic hypoxia (from PO2 21% to PO2 8%) and the third was also exposed to the same chronic hypoxia (CH) protocol but followed by two weeks under normoxia, and called as recovery group. The blood was extracted from inferior vena cava, the RNA was extracted, amplified and hybridized to Affimetrix MOE 430 V2.o chip. The results were analyzed using Partek Genome suite software. Using two fold cuttoff and 0% FDR parameters, we observed genes 512 diferentially expressed, of which one gene was up-regulated in both hypoxic and recovery condition, 202 were up-regulated during CH and then down-regulated after the recovery, 18 genes were down-regulated afteh CH and the up-regulated after recovery, ans finally 9 genes were down-regulated in both CH and recovery conditions.
Expression profiling reveals novel hypoxic biomarkers in peripheral blood of adult mice exposed to chronic hypoxia.
Age
View SamplesType I Interferons encompasses a large family of closely related cytokines comprising of at least 13 IFN- isotypes and single IFN-. Both IFN- and IFN- exert their activity through a common receptor IFNAR. Type I Interferons have broad regulatory effects and various subtypes of dendritic cells are influenced by this cytokines. In our study we asked question whether the low, constitutive levels of type I Interferons produced under steady state conditions are important for proper function of splenic conventional dendritic cells.
Absence of IFN-beta impairs antigen presentation capacity of splenic dendritic cells via down-regulation of heat shock protein 70.
Sex, Age, Specimen part
View SamplesThe goal of this project was to characterize DCs from lymphopenic mice, like RAG (recombination activated gene) deficient mice and to examine the influence of mature B and T cells on the antigen presenting ability of splenic cDCs. We demonstrate how cellular cross-talk can shape the character and function of cDCs. Lymphopenic conditions, where splenic cDCs have to develop and differentiate, drastically change their character and their ability to cross-present soluble antigen.
Immunoglobulins drive terminal maturation of splenic dendritic cells.
Sex, Age, Specimen part
View Samples