To date, no published reports (human or animal) have examined the impact of acute liver failure on global gene expression profiles in remote organ systems like the kidney. In this study, we have characterized a model of acute kidney injury (AKI) using two highly-accurate techniques for assessing renal function in a mouse. In this model, mice developed massive hepatocyte necrosis, disordered hepatosplanchnic hemodynamics, and alterations consistent with ALF. Simultaneously, acute renal insufficiency developed, manifesting as oliguria, azotemia, and decreased glomerular filtration. In this paper, renal function is corroborated using two independent methodologies. These techniques are used in addition to hemodynamic, biochemical, and histologic analyses to demonstrate that acute hepatic injury promulgates renal dysfunction in a mouse. Similar to network-based analyses conducted in other models of human disease, we present a comprehensive, genome-wide assessment of the differentially-regulated, renal transcriptome in the setting of massive hepatic necrosis. Using this approach, mice receiving the select hepatotoxin D-(+)-Galactosamine HCl (GalN) were found to have significant perturbations in renal pathways related to lipid metabolism, small molecule biochemistry, the cell cycle, molecular transport, and amino acid metabolism, despite normal renal histology. By combining data obtained from clinical, physiologic, and molecular investigations, our findings have direct implications for exploring potential pharmacological approaches to the prevention of AKI in this setting.
No associated publication
Specimen part, Time
View SamplesGene expression profile of joint tissue from C3H and interval specific congenic mouse lines (ISCL) following infection with Borrelia burgdorferi
Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12.
Specimen part
View SamplesPurpose: The DBA/2J mouse is a model for secondary angle-closure glaucoma due to iris atrophy and pigment dispersion, which ultimately leads to increased intraocular pressure (IOP). We sought to correlate changes in retinal gene expression with glaucoma-like pathology by performing microarray analysis of retinal RNA from DBA/2J mice at 3 months before disease onset, and at 8 months, after IOP elevation. Methods: IOP was monitored monthly in DBA/2J animals by Tono-Pen and animals with normal (3 months) or elevated IOP (8 months) were identified. RNA was prepared from 3 individual retinas at each age, and the RNA was amplified and used to generate biotin-labeled probe for high density mouse Affymetrix arrays (U430.2). A subset of genes was selected for confirmation by quantitative RT-PCR using independent retina samples from DBA/2J animals at 3, 5 and 8 months of age, and compared to retinas from C57BL/6J control animals at 3 and 8 months. Results: There were changes in expression of 68 genes, with 32 genes increasing and 36 genes decreasing at 8 months versus 3 months. Upregulated genes were associated with immune response, glial activation, signaling and gene expression, while down-regulated genes included multiple crystallin genes. Significant changes in 9 upregulated genes and 2 downregulated genes were confirmed by quantitative RT-PCR, with some showing changes in expression by 5 months. Conclusions: DBA/2J retina shows evidence for glial activation and an immune-related response following IOP elevation, similar to what has been reported following acute elevation of IOP in other models.
Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma.
Age
View SamplesFollowing infection with LCMV, CD4+ SMARTA TCR transgenic cells (specific for the gp61-80 epitope of the LCMV glycoprotein) rapidly expand, become effector cells, and go on to form a long-lived memory population. Following infection with a recombinant Listeria monocytogenes expressing the LCMV epitope gp61-80, SMARTA cells also expand but display defective effector differentiation and fail to form memory. In an attempt to understand the signals required for CD4 T cell memory differentiation, we compared gene expression by SMARTA cells at the peak of the primary response following either Lm-gp61 or LCMV infection.
Rapid culling of the CD4+ T cell repertoire in the transition from effector to memory.
No sample metadata fields
View SamplesThe development of the epidermis, a stratified squamous epithelium, is dependent on the regulated differentiation of keratinocytes. Differentiation begins with the initiation of stratification, a process tightly controlled through proper gene expression. AP-2 is expressed in skin and previous research suggested a pathway where p63 gene induction results in increased expression of AP-2 which in turn is responsible for induction of K14. This study uses a conditional gene ablation model to further explore the role of AP-2 in skin development. Mice deficient for AP-2 exhibited delayed expression of p63, K14, and K1, key genes required for development and differentiation of the epidermis. In addition, microarray analysis of E16.5 skin revealed delayed expression of additional late epidermal differentiation genes: filaggrin, repetin and secreted Ly6/Plaur domain containing 1, in mutant mice. The genetic delay in skin development was further confirmed by a functional delay in the formation of an epidermal barrier. These results document an important role for AP-2 in skin development, and reveal the existence of regulatory factors that can compensate for AP-2 in its absence.
Disruption of epidermal specific gene expression and delayed skin development in AP-2 gamma mutant mice.
No sample metadata fields
View SamplesThe Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.
Genetics of the hippocampal transcriptome in mouse: a systematic survey and online neurogenomics resource.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver.
Sex, Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Homer1a is a core brain molecular correlate of sleep loss.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.
Specimen part, Treatment, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Conserved principles of mammalian transcriptional regulation revealed by RNA half-life.
No sample metadata fields
View Samples