The mature CNS contains PDGFRA+ oligodendrocyte progenitor cells (OPC) which may remain quiescent, proliferate, or differentiate into oligodendrocytes. In human gliomas, rapidly proliferating Olig2+ cells resembling OPCs are frequently observed. We sought to identify, in vivo, candidate pathways uniquely required for OPC differentiation or quiescence. Using the bacTRAP methodology, we generated and analyzed mouse lines for translational profiling the major cells types (including OPCs), in the normal mouse brain. We then profiled oligodendoglial (Olig2+) cells from a mouse model of Pdgf-driven glioma. This analysis confirmed that Olig2+ tumor cells are most similar to OPCs, yet, it identified differences in key progenitor genes - candidates for promotion of differentiation or quiescence.
Candidate pathways for promoting differentiation or quiescence of oligodendrocyte progenitor-like cells in glioma.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Sex, Specimen part, Treatment
View SamplesThe adult human gut microbial community is typically dominated by two bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from E. rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the former possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole genome transcriptional profiling of both organisms in their distal gut (cecal) habitat as well as host responses, high resolution proteomic analysis of cecal contents, and biochemical assays of carbohydrate metabolism. B. thetaiotaomicron adapts to E. rectale by upregulating expression of a variety of polysaccharide utilization loci (PULs) encoding numerous glycoside hydrolase gene families, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is utilized by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of major gut bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.
No associated publication
No sample metadata fields
View SamplesNave Treg cells were purified from the resting spleens of FoxP3-GFP knock-in mice made in the 129/SvJ strain.
No associated publication
Specimen part
View SamplesWe demonstrate diverse roles of interferongamma (IFN-) in the induction and regulation of immune-mediated inflammation using a transfer model of autoimmune diabetes. The diabetogenic CD4+BDC2.5 (BDC) T cell clone upon transfer into NOD.scid mice induced destruction of islets of Langerhans leading to diabetes. Administration of a neutralizing antibody to IFN- (H22) resulted in long term protection (LTP) from diabetes, with inflammation but persistence of a significant, albeit decreased numbers of -cells. BDC T cells were a mixture of cells expressing high, intermediate and low levels of the T cell receptor. Clonotype-low BDC T cells were required for LTP. Furthermore, islet infiltrating leukocytes in the LTP mice contained Foxp3+CD4 T cells. Islet inflammation in both diabetic and LTP mice was characterized by heavy infiltration of macrophages. Gene expression profiles indicated that macrophages in diabetic mice were M1-type, while LTP mice contained M2-differentiated. The LTP was abolished if mice were treated with either an antibody depleting CD4 T cells, or a neutralizing antibody to CTLA-4, in this case, only at a late stage. Neutralization of IL-10, TGF-, GITR or CD25 had no effect. Transfer of only clonotype-high expressing BDC T cells induced diabetes but in contrast, H22 antibodies did not inhibit diabetes. While clonotype high T cells induced diabetes even when IFN- was neutralized, paradoxically, there was reduced inflammation and no diabetes if host myeloid cells lacked IFN- receptor. Hence, using monoclonal CD4 T cells, IFN- can have a wide diversity of roles, depending on the setting of the immune process.
No associated publication
No sample metadata fields
View SamplesThe immense molecular diversity of neurons challenges our ability to deconvolve the relationship between the genetic and the cellular underpinnings of neuropsychiatric disorders. Hypocretin (orexin) containing neurons of the lateral hypothalamus are clearly essential for the normal regulation of sleep and wake behaviors, and have been implicated in feeding, anxiety, depression and reward. However, little is known about the molecular phenotypes of these cells, or the mechanism of their specification. We have generated a Hcrt bacTRAP line for comprehensive translational profiling of these neuronsin vivo. From this profile, we have identified 188 transcripts, as enriched in these neurons, in additions to thousands more moderately enriched or nominally expressed. We validated many of these at the RNA and protein level, including the transcription factor Lhx9. Lhx9 protein is found in a subset of these neurons, and ablation of these gene results in a 30% loss of Hcrt neuron number, and a profound hypersomnolence in mice.This data suggests that Lhx9 may be important for specification of some Hcrt neurons, and the subsets of these neurons may contribute to discrete sleep phenotypes.
Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation.
Sex, Specimen part
View SamplesWild-type (WT) C57Bl/6 and akt2-/- male mice.
No associated publication
Specimen part
View SamplesPreclinical work has long focused only on male animals, even though sexual divergence in both baseline behaviors and drug responses clearly impact treatment outcomes in patients. Psychiatric disorders are notably divergent, with males showing higher prevalence of ADHD and ASD, and females GAD and MDD. This divergence is reflected in quantitative differences in subclincal behaviors. The Noradrenergic neurotransmitter system is targeted by many psychiatric drugs, but is relatively uncharacterized at a molecular level. We developed a mouse to profile these neurons, defining their both a baseline transcriptome, including druggable receptors, and their molecular response to stimulation. We also discovered a remarkable sexual divergence in their gene expression, including functionally increased expression of the EP3 receptor in females a difference that can be used to modulate stress-induced anxiety in a sex specific manner. These findings underscore the need to conduct preclinical studies in a manner balanced for sex, and suggest that baseline differences in noradrenergic neurons could underlay sexually divergent behaviors.
Molecular and Functional Sex Differences of Noradrenergic Neurons in the Mouse Locus Coeruleus.
Sex, Specimen part
View SamplesContinuous regeneration of digestive enzyme (zymogen) secreting chief cells is a normal aspect of stomach function that is disrupted in pre-cancerous lesions. Regulation of zymogenic cell (ZC) differentiation is poorly understood. Here we profile Parietal, Pit, and Zymogenic cells for comparison and study.
The maturation of mucus-secreting gastric epithelial progenitors into digestive-enzyme secreting zymogenic cells requires Mist1.
Specimen part
View SamplesMethylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of young adult mice treated with a single systemic dose of MAM display DNA damage (O6-methylguanine lesions) that peaks at 48 hours and decline to near-normal levels at 7 days post-treatment. By contrast, at this time, MAM-treated mice lacking the gene encoding the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT), showed persistent O6-methylguanine DNA damage. The DNA damage was linked to cell-signaling pathways that are perturbed in cancer and neurodegenerative disease. These data are consistent with the established carcinogenic and developmental neurotoxic properties of MAM in rodents, and they support the proposal that cancer and neurodegeneration share common signal transduction pathways. They also strengthen the hypothesis that early life exposure to the MAM glucoside cycasin has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for medicine and/or food. Exposure to environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimers disease, as well as cancer.
The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner.
Sex, Specimen part, Time
View Samples