The Forkhead Box, FOXO1 and FOXO3, transcription factors regulate multiple functions in mammalian cells. Selective inactivation of the Foxo1 and Foxo3 genes in murine ovarian granulosa cells severely impairs follicular development and apoptosis causing infertility, and as shown herein, granulosa cell tumor (GCT) formation. Coordinate depletion of the tumor suppressor Pten gene in the Foxo1/3 strain enhanced the penetrance and onset of GCT formation
FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development.
Specimen part
View SamplesNotch signaling is widely implicated in mouse mammary gland development and tumorigenesis. To investigate the effects of acute activation of Notch signaling in the mammary epithelial compartment, we generated bi-transgenic MMTV-rtTA; TetO-NICD1 (MTB/TICNX) mice that conditionally express a constitutively active NOTCH1 intracellular domain (NICD1) construct in the mammary epithelium upon doxycycline administration.
Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy.
Sex, Age, Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice.
Specimen part
View SamplesAfter positive selection in the thymus, the newly generated single positive (SP) thymocytes are phenotypically and functionally immature and undergo apoptosis upon antigen stimulation. In the thymic medullary microenvironment, SP cells progressively acquire immunocompetence. Negative selection to remove autoreactive T cells also occur at this stage. We have defined four subsets of CD4 SP, namely, SP1, SP2, SP3, and SP4 that follow a functional maturation program and a sequential emergence during mouse ontogeny.
The molecular signature underlying the thymic migration and maturation of TCRαβ+ CD4+ CD8 thymocytes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver.
Specimen part
View SamplesIn this study, we demonstrated that deletion of the activating transcription factor 4 (ATF4) resulted in severely impaired HSC expansion in the fetal liver at E12.5 and E15.5. In contrast, generation of the first HSC population in the aorta-gonad-mesonephros region at E11.5 was not significantly affected. Furthermore, the HSC-supporting ability of both endothelial and stromal cells in fetal liver was significantly compromised in the absence of ATF4. Gene profiling using RNA-seq revealed down-regulated expression of a panel of cytokines in ATF4-/- stromal cells, including angiopoietin-like protein 3 (Angptl3) and vascular endothelial growth factor-A (VEGFA).
ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver.
Specimen part
View SamplesWnt9b is expressed in the ureteric bud of the kidney at all stages of development. In Wnt9b mutants, the ureteric bud forms but the metanephric mesenchyme is never induced to undergo differentiation.
Myc cooperates with β-catenin to drive gene expression in nephron progenitor cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.
No sample metadata fields
View SamplesRestricted feeding impacts the hepatic circadian clock of WT mice. Cry1, Cry2 double KO mice lack a circadian clock and are thus expected to show rhythmical gene expression in the liver. Imposing a temporally restricted feeding schedule on these mice shows how the hepatic circadian clock and rhythmic food intake regulate rhythmic transcription in parallel
Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.
No sample metadata fields
View SamplesTemporally restricted feeding is known to impact the circadian clock. This dataset shows the effects of temporally restricted feeding on the hepatic transcriptome.
Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.
No sample metadata fields
View Samples