This SuperSeries is composed of the SubSeries listed below.
Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual-platform microarray analysis.
Sex, Specimen part
View SamplesA dual platform microarray analysis was used to characterize the temporal transcriptomic response in the mouse liver following trauma and hemmorhagic shock
Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual-platform microarray analysis.
Sex, Specimen part
View SamplesOur study in zebrafish is the first to use an animal model to understand the biology of the developmental disorder Roberts Syndrome (RBS). RBS is caused by mutations in the ESCO2 gene.
A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle.
Age, Specimen part
View SamplesIn a transgenic mouse model of Alzheimer disease (AD), cleavage of the amyloid precursor protein (APP) by the -secretase ADAM10 prevented amyloid plaque formation and alleviated cognitive deficits. Furthermore, there was a positive influence of ADAM10 over-expression on neurotransmitter-specific formation of synapses and on synaptic plasticity.
Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice.
Sex, Age
View SamplesThe -amyloid precursor protein APP and the related APLPs, undergo complex proteolytic processing giving rise to several fragments. Whereas it is well established that A accumulation is a central trigger for Alzheimer disease (AD), the physiological role of APP family members and their diverse proteolytic products is still largely unknown. The secreted APPs ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The -secretase generated APP intracellular domain AICD, functions as a transciptional regulator in heterologous reporter assays, although its role for endogenous gene regulation has remained controversial. To gain further insight into the molecular changes associated with knockout phenotypes and to elucidate the physiological functions of APP family members including their proposed role as transcriptional regulators we performed a DNA microarray transcriptome profiling of the frontal cortex of adult wild type, APP-/-, APLP2-/- and APPs knockin (KI) mice, APP/, expressing solely the secreted APPs ectodomain. Biological pathways affected by the lack of APP family members included regulation of neurogenesis, regulation of transcription and regulation of neuron projection development. Comparative analysis of transcriptome changes and qPCR validation identified co-regulated gene sets. Interestingly, these included heat shock proteins and plasticity related genes that were down-regulated in knock-out cortices. In contrast, we failed to detect significant differences in expression of previously proposed AICD target genes including Bace1, Kai1, Gsk3b, p53, Tip60 and Vglut2. Only Egfr was slightly up-regulated in APLP2-/- mice. Comparison of APP-/- and APP/ with wild-type mice revealed a high proportion of co-regulated genes indicating an important role of the C-terminus for cellular signaling. Finally, comparison of APLP2-/- on different genetic backgrounds revealed that background related transcriptome changes may dominate over changes due to the knockout of a single gene. Shared transcriptome profiles corroborated closely related physiological functions of APP family members in the adult central nervous system. As expression of proposed AICD target genes was not altered in adult cortex, this may indicate that these genes are not affected by lack of APP under resting conditions or only in a small subset of cells.
Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex.
Sex, Specimen part
View Samples5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a tumor vascular disrupting agent, is shown here to have substantial activity as a single agent against human A375 melanoma xenografts in nude mice (94 % hemorrhagic necrosis after 24 h, and 26 days growth delay following single dose at 25 mg/kg). CD45+ cells in tumor tissue increased 5-fold over the first 3 days after treatment, which was due largely to an influx of CD11b+ Ly6G+ neutrophils. Using murine and human multiplex cytokine assays to dissect the cytokines produced by host stromal cells or by the melanoma cells, it was shown that both the stromal cells and the A375 melanoma cells produced cytokines capable of attracting neutrophils into the tumor. The same xenografts were also analyzed using human and mouse Affymetrix microarrays to separately identify tumor cell-specific (human) and stromal cell-specific (mouse) gene expression changes. DMXAA induced numerous stromal cytokine mRNAs, including IP-10, IL-6, MIP-1/, MIP-2, KC, RANTES, MIG, MCP-1 and IL-1, many of which were also elevated at the protein level. Numerous human cytokine mRNAs were also induced including MCP-1, IL-8, GRO, VEGF, GM-CSF and IL-6, which again was in line with our protein data. Pathway analysis indicated that significant numbers of the stromal mRNAs induced by DMXAA are regulated downstream of TNF-, interferon- and NFB. Our results suggest that DMXAA may have utility in combination therapy for human melanoma through the activation of pro-inflammatory signalling pathways and cytokine expression from both stromal and tumor cells, leading to haemorrhagic necrosis, neutrophil influx and growth inhibition.
Dissection of stromal and cancer cell-derived signals in melanoma xenografts before and after treatment with DMXAA.
Specimen part, Cell line
View SamplesTo determine the modulation of gene expression of mouse BMDCs in the presence of living intracellular Leishmania amazonensis amastigotes
Sorting of Leishmania-bearing dendritic cells reveals subtle parasite-induced modulation of host-cell gene expression.
Sex, Age
View SamplesAnalysis of hematopoietic stem cells (HSC, LSK Flt3-) and myeloid progenitors (MP, LK CD34+) sorted from wildtype and Dnmt1 hypomorph mice
DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.
Specimen part
View SamplesStudies investigating the causes of autism spectrum disorder (ASD) point to genetic as well as epigenetic mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here we identify the bromodomain and extra-terminal domain containing transcriptional regulators (BETs) as epigenetic drivers of an ASD-like disorder in mice. We found that the pharmacological suppression of the BET proteins by a novel, highly selective and brain-permeable inhibitor, I-BET858, leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome in mice. Many of the I-BET858 affected genes have been linked to ASD in humans thus suggesting the key role of the BET-controlled gene network in ASD. Our studies also suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.
Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice.
Specimen part
View SamplesNoroviruses have been widely recognized for their importance as causative agents of non-bacterial gastroenteritis. Mouse norovirus is the only representative of the norovirus genus, family Caliciviridae, able to grow in cell culture. The aim of this study is to describe the differences in the expression profiles of MNV-1 and mock-infected macrophages (RAW 264.7 cells), in order to better understand the response of the host cell to norovirus infection.
Apoptosis in murine norovirus-infected RAW264.7 cells is associated with downregulation of survivin.
No sample metadata fields
View Samples